Introduction to pH and pOH

[H+] mol/L	[H+] mol/L	pН	[OH-] mol/L	[OH-] mol/L	рОН	pH + pOH	[H+] x [OH-]
(expanded format)	(scientific notation)	(- log [H+])	(expanded format)	(scientific notation)	(- log [OH-])		
1.0	1.0×10^{0}	0	0.000000000000001	1.0 x 10 ⁻¹⁴	14	14	1.0 x 10 ⁻¹⁴
0.1	1.0 x 10 ⁻¹	1	0.0000000000001	1.0 x 10 ⁻¹³	13	14	1.0 x 10 ⁻¹⁴
0.01	1.0 x 10 ⁻²	2	0.000000000001	1.0 x 10 ⁻¹²	12	14	1.0 x 10 ⁻¹⁴
0.001	1.0 x 10 ⁻³	3	0.00000000001	1.0 x 10 ⁻¹¹	11	14	1.0 x 10 ⁻¹⁴
0.0001	1.0 x 10 ⁻⁴	4	0.0000000001	1.0 x 10 ⁻¹⁰	10	14	1.0 x 10 ⁻¹⁴
0.00001	1.0 x 10 ⁻⁵	5	0.000000001	1.0 x 10 ⁻⁹	9	14	1.0 x 10 ⁻¹⁴
0.000001	1.0 x 10 ⁻⁶	6	0.00000001	1.0 x 10 ⁻⁸	8	14	1.0 x 10 ⁻¹⁴
0.0000001	1.0 x 10 ⁻⁷	7	0.0000001	1.0 x 10 ⁻⁷	7	14	1.0 x 10 ⁻¹⁴
0.00000001	1.0 x 10 ⁻⁸	8	0.000001	1.0 x 10 ⁻⁶	6	14	1.0 x 10 ⁻¹⁴
0.000000001	1.0 x 10 ⁻⁹	9	0.00001	1.0 x 10 ⁻⁵	5	14	1.0 x 10 ⁻¹⁴
0.0000000001	1.0 x 10 ⁻¹⁰	10	0.0001	1.0 x 10 ⁻⁴	4	14	1.0 x 10 ⁻¹⁴
0.00000000001	1.0 x 10 ⁻¹¹	11	0.001	1.0 x 10 ⁻³	3	14	1.0 x 10 ⁻¹⁴
0.000000000001	1.0 x 10 ⁻¹²	12	0.01	1.0 x 10 ⁻²	2	14	1.0 x 10 ⁻¹⁴
0.0000000000001	1.0 x 10 ⁻¹³	13	0.1	1.0 x 10 ⁻¹	1	14	1.0 x 10 ⁻¹⁴
0.000000000000001	1.0 x 10 ⁻¹⁴	14	1.0	1.0×10^{0}	0	14	1.0 x 10 ⁻¹⁴

As [H+] decreases by 10x, pH increases by 1 pH unit As [OH-] increases by 10x, pOH decreases by I pOH unit

this is called a logarithmic scale

- the lower the pH, the higher the concentration of [H+] and the stronger the acid
- the lower the pH, the lower the concentration of [OH-]and the weaker the base
- the lower the pOH, the higher the concentration of [OH-] and the stronger the base
- the lower the pOH, the lower the concentration of [H+] and the weaker the acid
- for any solution, the pH + pOH = 14
- for any solution, the [H+] x [OH-] = 1.0×10^{-14}