Introduction to Chemistry

<u>Chemistry</u> is the study of _____: its _____ (what it is made of), its _____ (characteristics) and ______ (how it can change).

<u>Matter</u> is anything that has ______ and _____ (takes up space). Matter is the science word for "stuff".

The <u>Atomic Theory of Matter</u> states that all matter is made up of ______. An <u>atom</u> is the smallest unit of matter that we deal with in "every-day" chemistry.

Atoms, in turn, are made up of three types of sub-atomic particles: _____, ____ and

The number of protons in the nucleus of an atom is called the "_____". The atomic number determines the identity of that atom.

All of the different types of atoms (also called "elements") are arranged by atomic number on the Periodic Table of the Elements.

 eg. atomic number
 6
 79_____

 7
 80_____

When an atom is in a ______ (uncharged) form, the number of electrons is ______ to the number of protons.

Electrons are arranged in _____ (energy levels) around the nucleus as shown in "Bohr-Rutherford" diagrams. The electron shells are filled in order, moving out from the nucleus:

- The first shell can hold _____electrons.
- The second shell
- The third shell
- The fourth shell _____

The electrons in the outer shell are called ______

The Elements

All known types of a	toms are shown on the	an of	
Each type of atom (e	lement) has a different numb	er of	
The number of proto	ns in the nucleus of an atom i	is called the	·
The atomic number c			
eg. atomic numbe	r 7 (7 protons) is		
atomic numbe	r 78 is		
In an uncharged () atom, the	number of electrons is	
the number of proton	s. The electrons are found in	energy leve	els) around the
nucleus, as shown in are called		diagrams. The electron	s in the outer shell
The number of	de	termines an atom's	and
	(how t	he atom will behave).	
but they may have atoms of an element	are	All that this mea but they still properties.	ans is that some have the same
Atoms that have the	same are called "	, but different	
Chemists use the foll	owing short form for elemen	ts and their isotopes:	
mas	s number:		
	eg. "(" is the chemical symbol for	
6 atom	nic number:		
Summary:			
<pre># of protons = the a # of electrons = the # # of neutrons = the r</pre>	tomic number, this determin of protons in an uncharged (nass number – the atomic nu	es the type of atom (element) (neutral) atom mber	
40 eg. ₁₈ Ar	41 18 A r	42 18Ar	

Grade 10 Science Review of Atomic Structure #1

<u>Chemistry</u> is the study of matter, its properties and its transformations (how it can change). <u>Matter</u> is anything that takes up space and has mass.

The smallest particle of matter that we are concerned with in "normal" chemistry is the atom. Over the centuries, many researchers did experiments (remember Crookes, Thomson, Rutherford and Bohr?) and discovered that the atom is made up of two different regions: a very dense central nucleus which is made up of protons and neutrons, and a "cloud" area around the nucleus that is mostly empty space, but contains the electrons. The three different types of sub-atomic particles (protons, neutrons and electrons) have the following characteristics:

- Protons are found in the atom's nucleus, have +1 unit of electrical charge and weigh about 1 atomic mass unit, u. The number of protons in atoms distinguishes the elements from one another. The number of protons, called the **atomic number**, varies from 1 for the element hydrogen to over 100. The atomic number, then, identifies the element.
- (2) Neutrons are also found in the atom's nucleus and, as their name suggests, are electrically neutral i.e. their charge is zero. Their mass is about 1 u. There is no relationship between the numbers of neutrons and protons. However, since these two particles give most of the mass to an atom, the total number of neutrons and protons is called the **mass number**.
- (3) Electrons are found in the space around the nucleus and have -1 unit of electrical charge. They are some 2000 times smaller than protons and neutrons. For this reason their mass is quite often given as 0 u. In a neutral atom the number of electrons equals the number of protons. In an electrically charged atom (an ion) the number of electrons can be more or less than the number of protons. For example, the electric charge on an atom with 20 protons and 18 electrons is +2.

There are 105 unique elements that have been discovered, to date. Each element is identified by the number of protons in the nucleus, or its atomic number. An atom that has the atomic number " one" has one proton in its nucleus is always the element, hydrogen. An atom with the atomic number "two" has two protons and is always helium, three protons is lithium etc. The elements are arranged in order of increasing atomic number in the Periodic Table of the Elements. The number of neutrons and electrons is not important in identifying the element.

Each element has been given a one or two letter abbreviation. Often, the abbreviation is written with additional information in the following format:

$^{12}{}_6C$: -"C" is the chemical symbol for carbon

- 6 is the **atomic number**, **Z**, this is the number of protons in the nucleus
- 12 is the **mass number**, **A**, this is the number of protons plus the number of neutrons in the nucleus
- for an uncharged or neutral atom, the number of electrons equals the number of protons

Some elements have different numbers of neutrons in their nuclei (remember, the same element always has the same number of protons or atomic number). The different numbers of neutrons in the nuclei mean that the nuclei will be heavier, or have a larger mass number. Atoms that have the same number of protons, but different numbers of neutrons are called **isotopes**.

The **atomic mass** for an element is the average mass of the atoms (isotopes) for that element, and this is the number reported on the Periodic Table.

Review of Atomic Structure #1

- 1. The three sub-atomic particles in an atom are _____, ___, and
- 2. Complete the following chart comparing the three types of sub-atomic particles:

Name of Particle	Location in Atom	Mass	Charge

- 3. Which type of sub-atomic particle determines the identity of an atom?
- 4. Atoms having the same number of protons but different numbers of neutrons are called ______.
- 5. The mass number of an atom having 20 protons, 20 electrons and 22 neutrons is ______.
- 6. Complete the following chart, for the following neutral (uncharged) atoms:

Name of Element	Symbol for Element	Atomic Number	Number of Protons	Number of Electrons	Number of Neutrons	Mass Number
	Be					9
		16			17	
Silicon					14	
	Fe			26		56
				55		133
		84		84	124	
			13			27
Krypton					48	84

7. What information does each of the following symbols tell us about the following neutral atoms?

Symbol	Name of Element	Atomic #	Mass #	# of Protons	# of Neutrons	# of Electrons
¹⁶ 8O						
³¹ 15P						
²⁵ 12Mg						
⁴⁰ 19K						
²⁰ 10Ne						

8. Refer to your note from class to complete the following chart comparing metals and non-metals:

Characteristic	Metals	Non-metals
Found on which side of the Periodic Table?		
How many valence electrons do they have?		
What is their usual state at room temperature?		
What is their usual colour?		
Are they shiny or dull?		
Do they conduct electricity?		
Are they malleable or brittle as solids?		

9. Predict five properties (characteristics) of the element hafnium (Hf).

Organization of the Periodic Table

Th	ne el	lements on the	e Periodic Table	are organized in four m	ain ways:	
1.	By	increasing		(increasi	ng number of).
2.	Inte	0	(horizontal	rows):		
	-all	l elements in a	a Period have the	e same number of		·
	(Fc	or example:	all elements in	the second Period hav	e shells, while	those in the fourth
	Pe	riod have	shells)			
3.	Inte	0	_ or	(vertical columns)	:	
	-all	l elements in a	a Group have the	same number of		, which
	giv	ves them simil	lar	and	properties.	
	-th	e Group numb	per tells us how r	nany		_ the atoms in the
	Gr	roup have. (F	or example: Gro	oup I elements have	_valence electron, w	/hile Group VII
	ele	ements have _	valence elec	trons).		
4.	Ву	the "		" into Metals, Nor	n-metals and Metallo	oids:
	a)	<u>Metals</u>				
		-found on the	e side o	f the "staircase" line		
		-have,	or valenc	e electrons		
		-are usually		,	,	coloured and are
		CO	nductors of elect	ricity		
		-tend to	valence elec	trons (form	charged ions	s called)
	b)	Non-Metals				
		-found on th	e side d	of the "staircase" line		
		-have,	, orva	lence electrons		
		-are usually	,	, can be any	, any	and are
		conductors of	of electricity			
		-tend to	valence elect	trons (form	charged ions	s called)
	c)	<u>Metalloids</u>				
		-found		the "staircase" line		
		-have,	or valenc	e electrons		
		-have proper	ties of both	and		
		-can either _	or	valence electrons		
			is an exa	mple		

The Periodic Table

The Periodic Table of the Elements was originally developed, in the form that we are familiar with, by a Russian chemist named Dmitri Mendeleev. His table was based on observations of the chemical and physical properties of the elements known at the time. Mendeleev noticed that these properties repeated themselves over and over again when the elements were arranged in order of increasing atomic numbers. It was this repetition that led to the choice of the name "periodic".

For our purposes, the table organizes the elements in three main ways:

Metals and Non-Metals

Elements that tend to lose electrons and become positively charged ions are found on the left side of the periodic table. These elements are the **metals** and have the characteristic properties of metals: they are shiny, solid at room temperature, malleable, good conductors of heat and electricity, and have high melting points.

Elements that tend to gain electrons and become negatively charged ions are found on the right side of the periodic table. These elements are **non-metals** and have the characteristic properties of non-metals: they are dull (not shiny), liquid or gas at room temperature, brittle as solids, poor conductors of heat and electricity, and have low melting points.

There is no clear-cut division between the two types of elements but the "staircase" line, toward the right hand side of the table, separates the metallic elements from the non-metallic elements.

Elements near to this line may have properties of both types of elements, and are called metalloids.

Families or Groups

The vertical columns in the periodic table organize the elements into groups or families based on the number of electrons in the outer (valence) shell. Each group is identified by a Roman Numeral (and may, or may not, use a letter of the alphabet as well).

Groups of elements have similar chemical and physical properties due to their similar electron arrangements. In groups of metals, the most reactive element is at the bottom of the family. In groups of non-metals, the most reactive element is at the top of the family.

The elements of one family, group VIII (also known as the INERT GASES or NOBLE GASES), are almost completely non-reactive because they have the stable octet electron arrangement (all of their electron shells are "full").

Periods

These are the horizontal rows across the table. In a period there is a gradual change from metals to non-metals as the atomic number increases and as the number of electrons in the valence shell increases. A period always starts with an element having one electron in the valence shell and ends with 8 electrons in this outer shell. (Period I is the only exception to this as the valence shell is the first shell which is capable of holding only 2 electrons).

<u>Homework</u>: Answer the following questions in <u>full sentences</u> in your **notebook**.

- 1. a) What are **metals** and what type of ion do they form?
 - b) What are non-metals and what type of ion do they form?
 - c) Prepare a chart comparing the properties of metals and non-metals.
 - d) What are metalloids and where are they located on the Periodic Table?
- 2. a) What are Groups or Families of elements?
 - b) Why are the elements in a Group so similar in their properties?
 - c) Where in the column would you find the **most** reactive: 1) metal 2) non-metal
- 3. What is special about the Group VIII elements and why is this?
- 4. What are Periods in the Periodic Table and what occurs as you move across a Period?

Workplace Hazardous Materials Information System (WHMIS) symbols were developed to standardize the labeling of dangerous materials used in all workplaces, including schools.

Laboratory Equipment

You can do many science investigations using everyday materials and equipment. In your science classroom, there are other pieces of equipment. Some of these are illustrated.

Identify the Safety Hazards

1	9
2	10
3	11
4	12
5	13
6	14r
7	15
8	16

OUTLINE FOR LAB REPORTS

- 1. Each lab report is to be started on a new piece of paper.
- 2. Record data neatly in PEN, on the observation chart. Do NOT rely on others to make observations and notes for you. Keep your own records as you perform the work.
- 3. Lab marks will be given, in part, for neatness, completeness and accuracy of results. Another part of the mark will be for "participation".
- 4. Do not use personal pronouns in a lab report.
- 5. The format of the lab reports should be as follows:
- **TITLE:** The title must be at the top of your lab report, and should fully describe the experiment that is being performed.
- **PURPOSE:** The purpose must be written out in full and state the reason for doing the lab. This is usually found in the lab instructions.
- **METHOD:** This section is a description of how the lab was performed. Explain the procedures as if you were instructing another person how to do the lab.

If the method is given to you in detail in your lab handout, you do not need to write it out again. Under the "Method" subheading, simply write: "Refer to lab handout".

OBSERVATIONS: This is the most important part of a lab report.

- Present your findings in an appropriate form. Numerical data, for example, is most often presented in a chart or table. All numerical data must include units.
- If you are recording your observations in a data table or chart, under the "Observation" subheading, write "Refer to Observation Table".
- Observation tables or charts must have a detailed title.
- It is good practice to describe the physical properties of the reactants before a reaction and then describe the products after the reaction. Include **AT LEAST** the state, colour and clarity of the reactants and products.
- DO NOT include calculations, interpretations or conclusions in this section.

QUESTIONS: Answer the questions that accompany the experiment in **full sentence format**.

CALCULATIONS: When calculations are necessary, you must show all of your work and include units.

- **CONCLUSIONS:** This is a brief summary of the results of the experiment that relates back to the purpose of the experiment. Are the results reasonable considering the possible sources of error? Very often the answers to the questions and the answers to the calculations following the experiment will lead you to the conclusions for the lab.
- **ERRORS**: Basically, an error statement is an explanation of why your results may be different from someone else who is doing the same experiment.
 - Unless you are told otherwise, discuss three (or more) sources of *unavoidable* error in the experiment. All equipment, for example, has a certain, built-in error depending on its "quality".
 - Pay attention when you are doing the experiment to observations that are difficult to measure or interpret; these are common sources of error.
 - A statement of error should include both the **cause** of the error and what the **effect** of that error was on the lab results. For example, "When timing the runners, each person would start their stopwatch at a slightly different time, so there would be slight errors in the reported times."
 - "Did the math wrong on my calculator." or "The glassware was not clean." are not acceptable sources of error. These are both **bad technique** and within your control.

At the end of a lab, you will be notified of when the lab report is due. Please hand in labs on time!! Labs will no longer be accepted for marking after the marked labs have been returned to the class.

Groups on the Periodic Table

Group VI Elements (

- elements in Group VI have ______
- to achieve a stable octet arrangement, Group VI elements tend to ______

)

Worksheet: The Periodic Table and the Formation of Ions

1.	Complete the follo	owing definit	ions and stat	tements:				
a)	A horizontal row on the Periodic Table is called a							
b)	A vertical column	on the Perio	dic Table is	called a		or	·	
c)	All elements in the same period have the same number of							
d)	All elements in th	e same group	have the same	me number o	of		•	
e)	A full outer electr	on shell (ofte	n with eight	electrons) is	called a			
f)	A charged atom is	s called a(n)						
g)	Metals are found	on the (left/ri	ght)	side o	f the staircas	e line on the	Periodic Tab	ole.
h)	Non-metals tend t	o (gain/lose)		electrons to	complete a s	stable octet e	lectron arran	gement.
i)	Metals tend to for	m (positive/n	egative)	_	ions called			-
j)	Non-metals are fo	ound on the (1	eft/right)	S	ide of the sta	ircase line of	n the Periodi	c Table.
k)	In a neutral atom,	the number of	of electrons i	is	to the nu	nber of prote	ons in the nu	cleus.
1)	Sulfur has	valence elec	trons, it is in	n Group	and is a	(metal/non-	metal)	
2.	Draw Rutherford- a) Mg b)	Bohr diagran	ns to show tl c) Ca	he formation d) N	of ions for: e) K	f) Sc		
3. a)	Refer to the period An uncharged ma • It will tend to • The resulting	dic table to an gnesium ator (gain/lose) ion will have	nswer the fol n hase prot	llowing: electron(s) in ectrons to ob tons,	its outer she tain a stable electrons an	l. octet arrange d an overall	ement. charge of	
b)	An uncharged chlIt will tend toThe resulting a	orine atom ha (gain/lose) ion will have	as ele elec prot	ctron(s) in its ctrons to obta tons,	s outer shell. ain a stable o electrons an	ctet arranger d an overall	nent. charge of	
c)	 An uncharged potassium atom has electron(s) in its outer shell. It will tend to (gain/lose) electrons to obtain a stable octet arrangement. The resulting ion will have protons, electrons and an overall charge of 							
d)	 An uncharged oxygen atom has electron(s) in its outer shell. It will tend to (gain/lose) electrons to obtain a stable octet arrangement. The resulting ion will have protons, electrons and an overall charge of 							
4.	Complete the follo	owing chart:		ſ	1		1	
	Element	Chemical Symbol	Atomic Number	# of Protons	# of Electrons	Total Charge	# of Neutrons	Mass Number

Element	Element Symbol		Protons	Electrons	Charge	Neutrons	Number
Carbon				6		6	
		33			3 -		74
	Mn			23		31	
			15	18			30
				18	1 -	20	
Gold				79			197
		29			1 +		63
	Ag			46		60	
				22	2+		51
			36		0	48	
	Cu			27		36	

5. From the chart in question 4: identify two isotopes of the same element.

DRAWING ELECTRON DOT DIAGRAMS

Complete the following table, as shown in the examples:

Element	Group #	# of Valence Electrons	Electron Dot Diagram of Neutral Atom	Electron Dot Diagram of Ion this atom forms. (Include its charge)
Mg	2	2	Mg	Mg $^{2+}$ (or Mg $^{+2)}$
F	7	7	F	F (or F)
В				
0				
CI				
Р				
AI				
Be				
н				
a Group 3 element with symbol "X"				
С				

Element	Atomic Number	# of Electrons in a Neutral Atom	Rutherford-Bohr Diagram	# of Valence Electrons	Group # on Periodic Table	Electron Dot Diagram of Neutral Atom	Metal or Non-Metal?	Tends to Gain or Lose Electrons?	Charge on the Ion
Na									
F									
Mg									
0									
Al									
Be									
S									

Review for Quiz #1: Atomic Structure (How it all Fits Together)

The Formation of Ionic Compounds

• atoms will or electrons to achieve a
• when metal atoms electrons, the electrons must be to atoms
• the number of electrons lost by the atoms the number of electrons gained by the atoms
• when metal atoms electrons, they form charged
• when non-metal atoms electrons, they form charged ions called
• the positive and negative ions are to each other by
• together, the positive and negative ions form an
• the attraction between positive and negative ions is an
An <u>ionic compound</u> is a substance that forms when and and
Showing the formation of ionic compounds using electron dot diagrams (EDDs):
Step 1: Draw EDDs for the elements as atoms. Draw arrows to show how the will move.
<u>Step 2</u> : Draw EDDs for the that form. Include the on the ions. Be sure that the number of positive charges the number of negative charges.
Step 3: Write the for the ionic compound. Always write the first!!! If there is more than one of either of the ions, write a after that element to indicate the number of each ion.
eg. show the formation of the ionic compound between calcium and fluorine:

Step 1Step 2Step 3

eg. show the formation of the ionic compound between sulfur and lithium:

Step 1Step 2Step 3

eg. aluminum and phosphorus:

Step 1

Step 2

Step 3

Naming Ionic Compounds:

1. Name the ______ first. Use its regular name.

2. Name the _______ second. Change the ending of the non-metal to ______. Only non-metals get the "ide" name!

Homework: Follow the steps above to show the formation of the ionic compounds between the following elements. Name each compound:

- 1. K and O
- 2. Mg and I
- 3. Sc and N
- 4. Na and Cl
- 5. Sr and P
- 6. Al and S

Investigation – The Properties of Ionic Compounds – Formula Determination

Complete this chart to show the formation of each ionic compound being investigated. Name each compound. (An example has been done for you). Write both the **name** and the **chemical formula** of the compound from the "Step 3" column in your Observation chart.

lonic Compound	Elements involved	Step 1	Step 2	Step 3
Example	sodium phosphorus			
A	lithium sulfur			
В	sodium chloride			
С	calcium phosphorus			
D	aluminum bromine			
E	magnesium nitrogen			
F	potassium oxygen			

NAMES AND FORMULAS OF IONIC COMPOUNDS

Сс	ompounds	containing	are
са	lled		
			Scientists have agreed on a universal way to name
the	ese compo	ounds.	
<u>Sc</u>	ome Rules	we need to know:	
1.	The meta	al ion <u>always</u> appears	in the name or the formula of the compound.
2.	The name	e of a cation (metal ion) is	the name of the neutral
at	om.		
	(eg: sodi	$ium \rightarrow$	_)
	The name	e of an anion (non-metal ion) take	s the name of the neutral atom and
			(eg: chlorine \rightarrow)
3.	When a f	ormula for a compound contains a	number in the
()	
	position,	this number tells us	ions of that type are in the compound.
	(The abs	ence of a number means there is	just ion of that type).
	eg: Na ₂ C)	eg: CaCl ₂
4.	The over	all charge on the compound is	, since the charge on the individual ions
		see "lon	Chart"
Na	aming loni	c Compounds:	
<u>Ex</u>	amples:	$NaCl \rightarrow$	
		CaO →	
		$BeF_2 \rightarrow$	
		K₂S →	
		_	
W	riting Forn	nulas for Ionic Compounds:	

The "Criss-cross" method:

-write the ions side by side (include the **value** and **type** of charge):

-"criss cross" the **value** of the charges (= subscripts):

(-leave out the signs since the charges balance out)

NAMING AND WRITING FORMULAS OF IONIC COMPOUNDS # 1

1. Name each of the following compounds:

a)	Na ₂ O	f)	CaCl ₂
b)	Li ₄ C	g)	BaO
c)	MgBr ₂	h)	Be_3N_2
d)	Csl	i)	AlBr₃
e)	KF	j)	H_2S

- 2. Write the formula for each of the following compounds:
 - a) beryllium fluoride e) lithium oxide
 - b) sodium nitride f) magnesium nitride
 - c) calcium sulfide g) barium sulfide
 - d) aluminum chloride h) potassium phosphide

NAMING AND WRITING FORMULAS OF IONIC COMPOUNDS #2

1. Name each of the following compounds:

a)	H ₂ O	f)	SiCl ₄
b)	Rb ₃ N	g)	MgO
c)	BaS	h)	LiBr
d)	KCI	i)	Be ₃ P ₂

- e) AIF₃ j) Cs₄C
- 2. Write the formula for each of the following compounds:
 - a) potassium oxide
 b) aluminum sulfide
 c) aluminum sulfide
 d) strontium bromide
 d) strontium bromide
 e) magnesium sulfide
 f) calcium phosphide
 g) sodium sulfide
 h) cesium nitride

Naming with Roman Numerals

Some metals can form ions with more than one charge:

- nickel can be _____ or _____
- copper can be _____ or _____
- gold can be _____ or _____
- lead can be _____ or _____

How do you know which ion you have? The charge of the metal ion is written in Roman Numerals after the name of the metal.

ex. Fe₂O₃

ex. CuS

eg. Write the chemical formulas for the following ionic compounds:

a) nickel (III) sulfide: _____

- b) copper (II) oxide: _____
- c) lead (IV) carbide: _____
- d) gold (I) nitride: _____
- e) mercury (II) phosphide: _____
- f) chromium (II) fluoride: _____

eg. Write the name for the following ionic compounds. If a metal has more than one possible charge, indicate the charge using Roman Numerals:

a)	HgO	d)	Ni ₂ S ₃
b)	PbI ₂	e)	Na ₃ N
c)	FeP	f)	SnO ₂

Homework:

1. Handout: Naming Compounds using Roman Numerals

NAMING AND WRITING FORMULAS OF IONIC COMPOUNDS #3

1. Name each of the following compounds:

a)	CuCl	e)	MgBr ₂
b)	Fe ₃ N ₂	f)	ZnO
c)	PbO	g)	AIP
d)	HgF ₂	h)	CaS

- 2. Write the formula for each of the following compounds:
- a) chromium (II) oxide
 b) lead (IV) sulfide
 c) sodium bromide
 d) cobalt (II) chloride
 h) nickel (II) iodide

NAMING AND WRITING FORMULAS OF IONIC COMPOUNDS #4

1. Name each of the following compounds:

a)	Cr ₂ O ₃	e)	Hg ₂ S
b)	CoS	f)	Zn ₃ P ₂
c)	Ag ₂ O	g)	PbCl ₂

- d) SnF₄ h) Bi₂O₅
- 2. Write the formula for each of the following compounds:

a)	nickel (III) bromide	e)	potassium chloride
b)	aluminum oxide	f)	iron (III) phosphide
c)	manganese (IV) sulfide	g)	arsenic (V) oxide
d)	chromium (II) sulfide	h)	antimony (III) fluoride

NAMING IONIC COMPOUNDS

1. Write the formula for the following binary compounds:

sodium fluoride	zinc nitride
silver nitride	strontium oxide
aluminum chloride	aluminum carbide
barium oxide	lithium sulfide
magnesium bromide	beryllium iodide
calcium sulfide	hydrogen bromide
lithium oxide	potassium chloride
barium sulfide	silver sulfide
potassium phosphide	zinc carbide
magnesium carbide	boron nitride

2. Name the following binary compounds:

Na ₂ O	Zn_3P_2
Li ₄ C	Ba ₃ N ₂
MgBr ₂	MgO
CsI	CaS
Ag ₃ N	BeO
Sr ₂ C	ZnBr ₂
CaCl ₂	NaF
BaO	Sr ₃ P ₂
AlBr ₃	AgI
H ₂ S	AlN

NAMING COMPOUNDS USING ROMAN NUMERALS

- 1. Write the formula for the following binary compounds: copper (I) chloride tin (IV) oxide iron (II) nitride copper (II) fluoride lead (II) oxide chromium (II) phosphide mercury (I) carbide mercury (II) fluoride magnesium bromide gold (III) chloride manganese (IV) sulfide cobalt (II) bromide manganese (II) carbide phosphorus (V) nitride gold (I) iodide nickel (III) phosphide iron (II) bromide copper (II) sulfide aluminum sulfide zinc iodide
 - 2. Name the following binary compounds:

Cu ₂ O	P ₂ O ₅
Hg ₄ C	Sn ₃ N ₂
AuBr ₃	CoO
Mn ₃ N ₄	MnS ₂
Ag ₃ N	Pb ₂ C
FeF ₂	Sr ₃ P ₂
NiCl ₂	CuF
HgO	NiBr ₃
CoBr ₃	AgI
CrS	FeN

WRITING FORMULAS FOR POLYATOMIC COMPOUNDS

Polyatomic compound: a type of ionic compound that...

- consists of more than two different elements
- the first half of the compound is a metal
- the second half of the compound is a "polyatomic ion", made up of non-metals, but with one overall charge
- 1. The **metal** ion is always positive, and is written **first**.
- 2. The "combo"/polyatomic ion is usually negative, and is written second. (You will find these on your periodic table/ion chart.)
- ** The easiest way to make the formula of the compound is to use the **CROSSOVER RULE.**

Sample Question:

"Give the formula for the compound formed between sodium and phosph<u>ate</u>." (The <u>ate</u> ending should tell you that this is a polyatomic ion! Look at your ion chart!)

Step 1:

 \cdot write the symbols for each of the substances in the compound, spaced apart, with the <u>metal</u> on the left and the non-metal combo on the right.

Step 2:

 \cdot write the ionic charge of each of the substances on the TOP OF IT!! (from the P.T., count how many steps to perfection to get this number). This is just your working step.

Step 3:

 \cdot cross the numbers over to the bottom of the opposite one. Drop the brackets ONLY if there is a number "1" outside of the polyatomic ion.

**** Now, squish them together!****

<u>The final formula</u> for the polyatomic compound of Na and PO₄ will be:

Try these ones:

- Calcium nitrate
- Aluminum carbonate
- Ammonium sulfide
- Chromium (III) hydrogen carbonate

- Scandium phosphate
- Lead (IV) sulfate
- Ammonium hydroxide

NAMING POLYATOMIC COMPOUNDS

Na₂SO₄ Ni(OH)₃ $Al_2(CO_3)_3$ $Pb(NO_3)_2$ KNO₃ HgHCO₃ Li₃PO₄ Cu_2SO_4 Ag₂HPO₄ NiSO₄ $(NH_4)_4C$ CoPO₄ BaSO₄ AuNO₃ $Zn_3(PO_4)_2$ Pb(HCO₃)₄ Be(OH)₂ $Fe_2(CO_3)_3$ $Mg(NO_3)_2$ $Mn(SO_4)_2$ NiPO₄ Si(NO₃)₄ ZnCO₃ NH₄OH $(NH_4)_2SO_4$ Sn(HPO₄)₂

2. Write the chemical formulas for the following ionic compounds:

zinc hydrogen carbonate	aluminum hydroxide
calcium phosphate	beryllium hydrogen phosphate
iron (III) sulfate	mercury (II) carbonate
sodium hydrogen phosphate	magnesium hydroxide
iron (II) nitrate	cobalt (II) carbonate
tin (IV) nitrate	sodium nitrate
lead (IV) hydroxide	silver sulfate
ammonium sulfate	manganese (IV) phosphate
nickel (III) carbonate	nickel (II) hydrogen phosphate
lead (II) phosphate	ammonium carbonate
mercury (I) hydrogen phosphate	gold (III) hydroxide

1. Name the following compounds (remember to use Roman Numerals, where necessary):

FINAL REVIEW: CHEMICAL NAMES AND FORMULAS

1. Name these compounds:	
LiCl	K ₂ S
AlI ₃	ZnS
BaF ₂	Mg ₃ N ₂
MgO	Na ₂ O
H ₃ P	Au ₃ P
NH4F	K ₃ PO ₄
FeSO ₄	Cu(OH) ₂
Al ₂ (SO ₄) ₃	$Ca(NO_3)_2$
Pb(OH) ₂	$Sr_3(PO_4)_2$
Fe(NO ₃) ₃	(NH ₄) ₂ SO ₄
Pb(HCO ₃) ₂	BaCO ₃
CuSO ₄	NiHPO ₄

2. Write the chemical formula for:

sodium fluoride	calcium iodide
lithium oxide	rubidium bromide
potassium bromide	barium iodide
aluminum chloride	hydrogen phosphide
iron(II) nitride	silver sulfide
iron(III) sulfide	zinc chloride
silver chloride	barium sulfate
potassium carbonate	iron (III) sulfide
iron(II) iodide	calcium carbonate
magnesium phosphate	copper (II) bromide
sodium hydrogen carbonate	silver nitrate
nickel(II) nitrate	copper(II) sulfate
tin(IV) hydroxide	ammonium chloride
chromium(III) oxide	cobalt(III) chloride
iron(III) sulfate	mercury(II) iodide
nickel(II) hydroxide	zinc sulfate
ammonium hydrogen phosphate	sodium nitride
aluminum fluoride	ammonium nitrate
barium phosphate	gold(III) sulfate

Explaining the Properties of Ionic Compounds

Ionic compounds are made of positive metal ions and negative non-metal ions which are attracted to one another by their charges.

Because all of the positive ions are attracted to all of the negative ions, ionic compounds form a huge network called a "crystal lattice".

The positive and negative ions are locked together so tightly in the crystal lattice, ionic compounds have the following properties:

a)	
b)	
c)	
d)	
e)	
f)	

Introduction to Covalent Bonding

All	l atoms are most stable when they have a electron arrangement).	(a	
Me	etals obtain a stable octet arrangement by electro	ons.	
No wa	on-metals obtain a stable octet arrangement by e	electrons. They can gain ele	ctrons in two
1.	Non-metals can electrons from a	and form an c	compound
2.	Non-metals can electrons with other compound	and form a	
Wl cal	hen two or more non-metals are held together because they ar led a bond, and the compound that forms is	e electrons, th s called a cc	e bond is mpound.
Co	valent compounds are also called Tecl	hnically, ionic compounds de	o not form
Yo • • C	ou can tell if a compound is ionic or covalent from its chemica Ionic compounds have a as their first element Covalent compounds contain	al formula:	
Yo	ou can also tell if a compound is ionic or covalent from its, as you will see in Lab #2.	or	

Drawing covalent compounds:

- 1. Read the chemical formula to find how many of each type of atom must be bonded together. eg. NH₃ contains:
- 2. Draw the electron dot diagrams for all of the atoms. Usually, the first element will go in the centre of the molecule.
- 3. Draw lines to "pair up" the single electrons. Draw the lines in such a way that all of the single electrons get "paired up".
- 4. Draw the molecule using "" to represent the shared electrons.
- 5. Draw in all of the electron pairs that did not participate in bonding.

eg. NH₃

H_2O

 $C\ell_2$

CO₂

PF₃

C₂**H**₆

Draw: HC ℓ H₂S OF₂ CF₂C ℓ ₂ O₂ N₂ NOC ℓ ₃ CH₂O C₂H₄ H₂O₂ CO₂H₂

Grade 10 Science Covalent Bonding

Elements are pure substances that contain only one type of atom.

Compounds are pure substances that contain two or more types of atoms, chemically combined in definite proportions.

There are two types of compounds:

Ionic compounds: these compounds form between the ions of metals and non-metals, based on electrostatic attraction between oppositely charged ions; for example: MgCl₂, NaF, CaO, Na₂S
 Covalent compounds: these compounds are formed between two or more non-metal atoms, and are based on the non-metal atoms "sharing" electrons between them; for example, H₂O, CO₂, FCl, NO₂.

Example of Covalent Bonding, H₂0:

A neutral oxygen atom has 8 electrons, 2 in the first shell and 6 in its outer shell.

A neutral hydrogen atom has 1 electron in its outer shell (hydrogen behaves as both a metal and a nonmetal, it will often bond covalently with other non-metals).

The outer electrons arrange themselves so that they are positioned in between the atoms, completing the outer orbits of both atoms at the same time. The sharing of the electrons holds the atoms together and is called a **covalent bond**. There are no electrical charges involved in covalent bonding.

Covalent compounds are uncharged and contain only non-metal atoms. Like ionic compounds, the atoms always combine in definite proportions, and the proportion depends on the number of electrons in the outer shell of the non-metal atoms. Covalent compounds are also called **molecules**.

For both ionic and covalent compounds, the ratio of elements in the compound can be written in a short form called a **chemical formula**. The chemical formula indicates two pieces of information:

- a) the type of elements which are combined to make up the compound
- b) the number of each element present in the compound. The number written as a subscript after an element tells us the number of atoms of that element in the compound.

Your knowledge of metals and non-metals will tell you if the compound is an ionic compound or a molecule (covalent compound).

- eg. NaCl: a metal plus a non-metal, so it is an ionic compound made of one sodium ion combined with one chloride ion
- eg. MgBr₂: a metal plus a non-metal, so it is an ionic compound made of one magnesium ion combined with two bromine ions
- eg. **SO**₂: two non-metal atoms, so it is a molecule (covalent compound) made of one sulfur atom with two oxygen atoms

Covalent Compounds

1. Complete the chart "Classification of Matter", including the three types of elements and the two types of compounds.

- 2. Define compound, ionic compound, covalent compound, molecule and electrolyte.
- 3. Complete the following chart, assuming that hydrogen is a non-metal. Use the chemical formula to find the number of atoms or ions of each element that are present in each compound.

Chemical Formula	Ionic or Covalent Compound	Number Of Each Type Of Atom Or Ion Present
K ₂ S		
$C_2H_2F_4$		
Na ₂ O		
NO ₂		
Li ₃ N		
Ba(NO ₃) ₂		
C ₆ H ₁₂ O ₆		
CO ₂		
PbSO ₄		
C ₂ H ₆ O		
Ca(HCO ₃) ₂		
PBr ₃		
Sn ₃ (PO ₄) ₄		
CCl ₄		

4. Would two metal atoms ever bond with each other? Why or why not?

5. Draw electron dot diagrams to show the electron arrangements in the following **molecules**:

a) CIF b) H₂S c) CH₄ d) H₂O e) PCl₃ f) $C_2H_4Cl_2$ g) CF₂Br₂

6. Summarize the properties of ionic and covalent compounds (from lab #1) including the presence of an odour, melting point, do they dissolve in water and do they conduct electricity in solution.

Naming Binary Covalent Compounds

• Ionic compounds form when ato	oms bond with	atoms. They are
named using the rules for naming fonic com	pounds that we have been learn	ing up until now.
• Covalent (molecular) compounds form when two or more		system.
• Remember, binary compounds (ionic or cov	alent) contain	·
The Rules for the Prefix System:		
1. Name the first element with its normal name	e. Indicate the number of	Ducfar
atoms of the first element with a prefix. If th	here is only one atom of the	
first element, then a prefix is not used for the	at element:	
NoH is		$\frac{2}{3}$ is
2. Write the name of the second element, chan	 ging the end of its name to	
Indicate the number of atoms of the	second element with a prefix.	4 15 5 is
3. If the second element is oxygen and the pref	fix ends in an "o" or "a", then	5 is
the "o" or "a" from the prefix is left off.		7 is
		7 is 8 is
N2O4 is		9 is
$C_{2}O_{7}$ is		10 is
Examples:		
SeO ₃ is	carbon tetrachloride	
S ₂ Cl ₂ is	diboron triphosphide	
BH ₃ is	sulfur hexafluoride	
P ₄ O ₁₀ is	dinitrogen pentoxide	
Practice : Name the following binary covalent com	pounds using the prefix system:	
SO ₂	NF ₃	
CCl ₄	N ₂ H ₂	
SO ₃	P ₂ H ₄	
ClF3	BI ₃	
PF5	SiBr ₄	
SCl ₆	NCl ₃	
N ₂ S ₂	P ₄ S ₁₀	
PBr ₃	SeF ₄	
C ₃ H ₈	SiO ₂	
P_4S_3	N ₂ O	
NO ₂	CS ₂	
OF ₂	PBr ₅	

Introduction to Chemical Reactions

Chemical reactions occur when the atoms new substances, called	in the are rearranged to form The products have new
A chemical reaction has occurred if:	
1. there is a	
2. a is produced (or). It may have an
3. energy is released or absorbed in the fo	rm of,,,,
or	
4. ais formed (a solution)	id that forms when two solutions are mixed).
You know a has	formed if the mixture goes
Note: changes of state (,	,or
Chemical reactions can be written two way 1) as using	ys: the names of the substances involved
(" \rightarrow " means)
2) as usin usin	g the chemical formulas of the substances
We can write equations and chemical reactions. eg. calcium chloride is broken down to pro Step 1 : write the word equation	equations from descriptions of oduce chlorine gas (Cl ₂) and calcium metal

Step 2: use the criss-cross rule to convert the names of the substances into their chemical formulas

You need to memorize the following chemical formulas:

- oxygen gas is _____ (when things burn in air, they are really reacting with _____)
- nitrogen gas is _____
- hydrogen gas is _____
- - eg. sodium metal is _____
 lead metal is _____

 copper metal is _____
 iron metal is _____

 mercury metal is _____
 tin metal is _____

When writing chemical equations, always follow these steps:

- Step 1: write the word equation
- Step 2: use the criss-cross rule to change the chemical names into chemical formulas
- eg. when zinc metal reacts with hydrochloric acid (HCl), it produces hydrogen gas and zinc chloride

eg. when methane (CH₄) burns in air, it produces carbon dioxide and water vapour

eg. when silver nitrate is mixed with sodium chloride, silver chloride and sodium nitrate are formed

eg. when lead metal is placed in copper (II) nitrate, it forms copper metal and lead (II) nitrate

Homework: complete question sheet on chemical reactions

Balancing Chemical Equations

Chemical to form ne	reactions w substa	s occur when ances, called	n the atom	s in the are	
The				tells us	that the
		of the		of a chemical reaction is	to
the		of the		before the chemical rea	action.
That is, du substances	ring a cł but the	nemical reac	tion, the a and	toms are that you	_ to form new have after a
chemical r not be		must be nor		what you started with during a chemical rea	h. Atoms can action.
For this rea	ason, ch	emical react	ions must	be written in their	form.
			Ţ		
KI	+	Pb(NO ₃) ₂	\rightarrow	$KNO_3 + PbI_2$ (s)	
CuSO	4 +	NaOH	\rightarrow	$Cu(OH)_2 + Na_2SO_4$	
		HgO	\rightarrow	Hg + O_2	
М	g +	S_8	\rightarrow	MgS	
Na	. +	H_2	\rightarrow	NH ₃	

Hints for Balancing:

Start with the element (atom) that has the ______ subscript. 1.

 $P_4 + O_2 \rightarrow P_2O_5$

- If an atom has "_____ or ____" for a subscript, it may help to put a coefficient 2. of in front of that substance.
- Balance the number of atoms of an element, using ______ in front 3. of the substances. Do \underline{NOT} change the ______ of the compounds. Generally, balance elements that are by themselves last (H₂, O₂, Fe etc.)
- 4.
- "Ping-pong" back and forth between the reactants and products until all of the 5. atoms are balanced.
- Double check your work. 6.

BALANCING EQUATIONS #1

1.	$AI + S \rightarrow AI_2S_3$
2.	$Sn + Cl_2 \rightarrow SnCl_4$
3.	$ZnO \rightarrow Zn + O_2$
4.	H_2 + O_2 \rightarrow H_2O
5.	$Cu_2O \rightarrow Cu + O_2$
6.	$Cu + S_8 \rightarrow Cu_2S$
7.	P_4 + O_2 \rightarrow P_4O_{10}
8.	$NO_2 \rightarrow N_2$ + O_2
9.	$H_2 + I_2 \rightarrow HI$
10.	$HgO \rightarrow Hg + O_2$
11.	H_2 + $N_2 \rightarrow NH_3$
12.	NaCl + $Br_2 \rightarrow NaBr + Cl_2$
13.	SiO_2 + HF \rightarrow SiF_4 + H ₂ O
14.	$Fe_2O_3 \rightarrow Fe + O_2$
15.	$K \textbf{+} Br_2 \rightarrow KBr$
16.	$Ca + HI \rightarrow Cal_2 + H_2$
17.	Na + $O_2 \rightarrow Na_2O$
18.	$BiCl_3 \rightarrow Bi + Cl_2$
19.	CO + $O_2 \rightarrow CO_2$
20.	$\label{eq:mg} \text{Mg} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
21.	$H_2O_2 \rightarrow H_2O + O_2$
22.	$AI_2O_3 \rightarrow AI + O_2$
23.	P_5 + $H_2 \rightarrow PH_3$

BALANCING EQUATIONS #2

1.	$CaS + KCl \rightarrow CaCl_2 + K_2S$
2.	Na + $Cl_2 \rightarrow NaCl$
3.	$Al + O_2 \rightarrow Al_2O_3$
4.	$AlN + CaO \rightarrow Al_2O_3 Ca_3N_2$
5.	$AlCl_3 \rightarrow Al + Cl_2$
6.	N_2 + $NH_4Cl \rightarrow (NH_4)_3N$ + Cl_2
7.	$Na_2CO_3 + Ca \rightarrow CaCO_3 + Na$
8.	$Al(NO_3)_3 + Na_2CO_3 \rightarrow NaNO_3 + Al_2(CO_3)_3$
9.	$(NH_4)_2O + Ca(NO_3)_2 \rightarrow NH_4NO_3 + CaO$
10.	$AgNO_3 + K_2S \rightarrow KNO_3 + Ag_2S$
11.	$BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 + NaCl$
12.	$Ca(NO_3)_2 + Li_3PO_4 \rightarrow Ca_3(PO_4)_2 + LiNO_3$
13.	$Mg + CuSO_4 \rightarrow MgSO_4 + Cu$
14.	NH_4Br + $Cl_2 \rightarrow NH_4Cl$ + Br_2
15.	$Zn + HCl \rightarrow ZnCl_2 + H_2$
16.	$I_2 + KF \rightarrow KI + F_2$
17.	$Li_2O + SO_2 \rightarrow Li_2SO_3$
18.	$FeS + HCl \rightarrow FeCl_2 + H_2S$
19.	$NH_4Cl + NaOH \rightarrow NH_4OH + NaCl$
20.	$Na_2SO_3 + HNO_3 \rightarrow NaNO_3 + H_2SO_3$
21.	$Fe_2(SO_4)_3 + NaOH \rightarrow Na_2SO_4 + Fe(OH)_3$
22.	$Fe_2O_3 + C \rightarrow Fe + CO_2$
23.	$NH_4Cl + Na_3PO_4 \rightarrow (NH_4)_3PO_4 + NaCl$

Writing and Balancing Chemical Equations

For the following chemical reactions:

- Step 1. Write the word equation.
- Step 2. Write the chemical equation (use the criss-cross rule to find the formulas of ionic compounds).
- Step 3. Balance the chemical equation.
- 1. Silver metal reacts with hydrogen sulfide (H₂S) to form silver sulfide and hydrogen gas.

2. When pentane (C_5H_{12}) burns in air, it produces carbon dioxide and water vapour.

3. When ammonia (NH₃) reacts with water it produces ammonium hydroxide.

4. When gold metal is placed in nitric acid (HNO₃) it produces gold (I) nitrate and hydrogen gas.

5. When lead metal is added to nickel (II) sulfate, it produces nickel metal and lead (II) sulfate.

6. When nonane (C_9H_{20}) burns in air, it produces carbon dioxide and water vapour.

7. When sodium azide (NaN₃) reacts, it produces nitrogen gas and sodium metal.

Types of Chemical Reactions

Chemical reactions can be classified into types. Four common types of reactions are:

1. <u>Synthesis Reactions</u>: two or more reactants combine to form ______

_____. (synthesis means _____)

In general:

Examples:

2. **Decomposition Reactions:** breaks down to form two or more products.

In general:

Examples:

3. <u>Single Displacement Reactions:</u> the atoms from reactants are to form different products. A single element replaces a similar element in a compound.

In general:

Examples:

4. <u>Double Displacement Reactions:</u> reactants are rearranged to form _____ new products. The atoms in the reactants _____.

In general:

Examples:

Classify the following unbalanced reactions as synthesis (synth), decomposition (decomp), single displacement (SD) or double displacement (DD):

$Al + S \rightarrow Al_2S_3$	
$NaCl + Br_2 \rightarrow NaBr + Cl_2$	
$NO_2 \rightarrow N_2 + O_2$	
$Ca + HI \rightarrow CaI_2 + H_2$	
NaCl + AgNO ₃ \rightarrow AgCl + NaNO ₃	
$SiO_2 + HF \rightarrow SiF_4 + H_2O$	
$Ba + S \longrightarrow BaS_4$	
Cu + $SnSO_4$ \rightarrow $CuSO_4$ + Sn	
$AlN + CaO \rightarrow Al_2O_3 + Ca_3N_2$	
$Mg + Cu(SO_4) \longrightarrow Mg(SO_4) + Cu$	
$Fe_2O_3 \rightarrow Fe + O_2$	
$C + Cl_2 + F_2 \rightarrow CCl_3F$	
$CaC_2 + O_2 \rightarrow Ca + CO_2$	
$(NH_4)Cl + Na_3PO_4 \rightarrow (NH_4)_3PO_4 + NaCl$	
$Na_3N \rightarrow Na + N_2$	
$P_4 + O_2 \rightarrow P_4O_{10}$	

Types of Chemical Reactions

Read pages 190 to 191 and 194 to 195 in your textbook. Answer the following questions.

- 1. Which type of chemical reaction has only one reactant?
- 2. Which type of chemical reaction has only one product?
- 3. Clearly distinguish between a single displacement and a double displacement reaction. How can you recognize each type?
- 4. Balance each of the following reactions and classify them as single or double displacement reactions:

a) NaCl + Br₂
$$\rightarrow$$
 NaBr + Cl₂ ______
b) Ca + HI \rightarrow CaI₂ + H₂ ______
c) SiO₂ + HF \rightarrow SiF₄ + H₂O ______
d) NaCl + AgNO₃ \rightarrow AgCl + NaNO₃ ______
e) N₂ + (NH₄)Cl \rightarrow (NH₄)₃N + Cl₂ ______
f) Al(NO₃)₃ + Na₂(CO₃) \rightarrow Na(NO₃) + Al₂(CO₃)₃ ______
g) Mg + Cu(SO₄) \rightarrow Mg(SO₄) + Cu ______

5. Balance each of the following equations and classify the reactions as synthesis, decomposition, single or double displacement reactions:

a)
$$H_2O_2 \rightarrow H_2O + O_2$$

b) $AIN + CaO \rightarrow Al_2O_3 + Ca_3N_2$ ______
c) $BN + F_2 \rightarrow BF_3 + N_2$ ______
d) $Ca + HI \rightarrow CaI_2 + H_2$ ______
e) $Fe + O_2 \rightarrow Fe_2O_3$ ______
f) $Cr_2(SO_4)_3 + NaOH \rightarrow Cr(OH)_3 + Na_2SO_4$ ______
g) $Fe_2O_3 + C \rightarrow Fe + CO_2$ ______
h) $NiCO_3 \rightarrow NiO + CO_2$ ______
j) $H_2S \rightarrow H_2 + S_2$ ______
k) $Ca(OH)_2 + HCI \rightarrow CaCl_2 + HOH$ ______

Acids, Bases and Neutral Substances

ll c	compounds can be classi	fied as either	, or		substances.
lach	has specific	(characte	ristics) and		
cid	<u>s</u> are compounds that di as their first	ssolve in	to produce	_ions.	All acids have
our	common acids are:				
	Hydrochloric acid ()			
	a	acid			
•	also known as "		", which is used as	s a	and to
	treat the water in		,		
	found in our	, where it		and	1
		in food			
	Sulfuric acid ()			
•	a	acid			
•	also known as "		" because it is used i	n	
•	found in	and is proc	duced when	fro	m
		(,, 8	and) is burned
	Acetic acid ()			
	a acid				
	it is	(in	concentrations)		
	is a	solution of a	acetic acid		
	Carbonic acid (H ₂ CO ₂	3)			
	a acid				
	forms when		() is dissolv	ed in v	vater
	used to "	"	,, _,, _	,,	-

Other acids include:

Bas	es are compounds that dissolve in to produce (
) ions. Bases are also called "" substances.	
Fou	r common bases are:	
1.	Sodium hydroxide ()	
•	a base	
•	used in and ()	
2.	Potassium hydroxide ()	
•	a base	
•	also known as "" which can be made from the	
•	used to make() and as a	
3.	Ammonium hydroxide ()	
•	a base	
•	used in many such as "" and	
	cleaners	
4.	Sodium bicarbonate (
•	a base	
•	also known as , which is used as a "	"
	for baking to make and rise	

<u>Neutral substances</u> are substances that contain either:

a)			of an	d) ions	
	eg				
b)	neither eg	nor	ions		
Neu the	itral substances	s are a of a	cids and bases	group of compounds that have	_of

Reactions of Acids and Bases

Acids and bases behave in predictable ways in many chemical reactions. For example:

1. When an acid reacts with a _____, the products of the reaction are always ______ () and a _____.

A <u>salt</u> is an _____ compound that does not contain the _____ () ion.

2. When an acid reacts with a _____ (), the products of the reaction are always _____ gas (), ____ and a ____.

 Many antacids contain carbonates.
 Tums contains

 (
). Other antacids contain
 ______(

).

3. When an acid and a _____ are mixed, a _____ and a _____. The reaction occurs. The products are always _____ and a _____. The reactions of acids and bases are also called ______ reactions because the products are ______ and no longer have the properties of ______.

The reactions of acids and bases have many common applications. For example, the venom of insects often contains an ______. When the insect stings you, they inject you with their venom and the acid causes ______ and _____. "_____" is a product that contains ______ (a weak ______). It neutralizes the acid and takes away the pain.

Practice Writing Chemical Equations for Acids and Bases

Write word equations and balanced chemical equations for the following reactions:

- 1. Calcium metal reacts with nitric acid (HNO₃).
- 2. Potassium carbonate reacts with hydrobromic acid (HBr).
- 3. Hydrofluoric acid (HF) reacts with potassium hydroxide.
- 4. Cadmium metal reacts with sulfuric acid.
- 5. Calcium hydroxide reacts with carbonic acid.
- 6. Ammonium chloride reacts with barium hydroxide to produce ammonia gas (NH₃), water vapour and barium chloride.
- 7. Aluminum metal reacts with phosphoric acid (H₃PO₄).
- 8. Magnesium carbonate reacts with hydroiodic acid (HI).