

Dominant and Recessive Genes If a ________ allele (version of the gene) is present, it is always "______" or _______ as a ______ in the organism eg. pea plants with T T (tall – tall) genotype are ______) eg. pea plants with T t (tall – short) genotype are ______) eg. pea plants with T t (tall – short) genotype are ______)

Homework Questions: (Reference: pages 118-129 of the textbook)

- 1. Define: cross pollination, P generation, F1 generation, hybrid, monohybrid cross, dominant trait, recessive trait, gene, allele, homozygous, heterozygous, genotype and phenotype
- 2. List 4 reasons why the common pea plant was such a good choice for Mendel's research.
- 3. Refer to the above diagram which summarizes Mendel's first experiment. Summarize the *results* of this experiment and state Mendel's principle of dominance.
- 4. Regarding the F2 generation:
 - a) Explain what is meant by the F2 generation and describe how it is obtained.
 - b) Summarize the results of Mendel's second experiment and the traits of the F2 plants.
 - c) What is the Mendelian ratio?
- 5. Summarize Mendel's conclusions from these experiments.
- 6. State the Law of Segregation.

Nan	ne:
Inan	ne:

	Perso	onal Data	Classroom Data						
Human trait	Your phenotype	Your possible genotype(s)	Number Dominant	in Class Recessive	Percentage Ratio (% : %) Dominant Recessive				
Tongue Rolling		genety pe(s)	Dominunt	1000055170					
(alleles R or r)									
Ritter Taster									
(alleles T or t)									
Hand Clasning									
(alleles C or c)									
Straight or Bent									
Thumh									
(alleles S or s)									
Straight or Bent									
Little Finger									
(alleles B or b)									
Widow's neak									
(alleles W or w)									
Earlobe									
Attachment									
(alleles E or e)									
Eve Pigmentation									
(D or d alleles)									
Mid digit hairs									
(alleles H or h)									
Wrist cords									
(alleles C or c)									
Freckles									
(alleles F or f)									
Dimples									
(alleles A or a)									

Inherited Human Characteristics Lab: Results and Analysis

To simplify analysis, we will concentrate on just five (5) human characteristics. In the chart below, enter your personal phenotypes and genotypes for each of the traits:

	Tongue Rolling	Hand Clasping	Straight or	Earlobe	Eye
			Bent Thumb	Attachment	Pigmentation
Phenotype					
Genotype					

Using the information in the above chart and the Phenotype Numbers for Five Characteristics chart, determine your phenotype number:

Summary of class results for phenotype numbers:

1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2

Questions:

- 1. Explain why it is impossible to know the exact genotype of a person with a dominant trait.
- 2. Would it be helpful to know your parents' phenotypes in determining your genotype? Explain.
- 3. Phenotype numbers:
- a) How many students are in the class?
- b) How many different phenotype numbers are represented in the class?
- c) How many phenotype numbers were duplicated (had more than one student listed)?
- d) If the phenotype number chart was expanded to include all 12 of the human characteristics studied in this lab, how many students would you expect to have exactly the same phenotype number?
- 4. What is the phenotype of a person with the genotype:
- a) EE Tt
- b) dd AA _____
- c) Rr Ww
- 5. Predict the genotype and phenotype for people who have the following:
- a) homozygous recessive for tongue rolling and heterozygous for Straight or Bent thumb?

Genotype: _____ Phenotype: _____

b) heterozygous for both Mid-digit hair and wrist cords

Genotype: _____ Phenotype: _____

c) homozygous dominant for freckles and homozygous recessive for the ability to taste bitter

Genotype: _____ Phenotype: _____

- 6. For the traits observed, did you find that the dominant allele is the most common allele? Give an example from the class results to support your answer.
- 7. Did you observe the typical Mendelian 3:1 pattern (75% dominant; 25% recessive) for the examined dominant and recessive phenotypes in the classroom?

If no, suggest a reason why not:

Genetics Problems #1: Solving Monohybrid Crosses

Ge the	enetics is the study of the of characteristics (traits) from to eir
In cha sev	the Inherited Human Characteristics activity, we observed your phenotype (
If t (cł	the genotypes of two organisms are known, they can be used to predict the
W	hen only trait (one) is studied, it is called a cross.
Ste	eps in solving monohybrid cross genetics problems using:
1.	Write a "" statement to define the alleles. Use a letter to represent the allele and the lower case of the letter for the allele.
2.	Determine the of the parents. For animals, specify which is and For, choose one plant as the male and the other as the female.
	<u>Note</u> : there are several "code words" that may be used to indicate the genotypes. For example, write the genotypes for the following pea plants using Mendel's tall (T) and dwarf (t) genes:
	 homozygous tall plant purebred tall plant heterozygous plant a hybrid plant a for the plant b homozygous dwarf plant
3. 4.	For both the male and female, determine the possible by segregating () the alleles. Write the possible gametes for the males (or) across the of
5.	Fill in the Punnett square to show all possible of gametes.
6.	State the possible
eg pla	A homozygous dominant pea plant with yellow seeds is crossed with a homozygous recessive pea ant with green seeds. What are the possible genotypes and phenotypes of the offspring?

.....

.....

_	
	••••
 	 ••••
	 ••••

eg. A man and a woman are both heterozygous for freckles. As we saw in the human traits lab, the dominant allele is ______. What are the chances of their children having freckles?

eg. Mendel crossed a purebred smooth pod pea plant with a purebred pea plant with wrinkled pods. All of the offspring had smooth pods. Determine the genotypes and phenotypes of the F_1 and F_2 generations.

Monohybrid Crosses: Pedigrees and Test Crosses

 Single gene inheritance refer breeding between individ different versions of a gen some alleles are a dominant gene will always 	s to traits (characteristics) that uals that differ in a single ger ne are calledover others ays be(at are determined by gene. he are called) in the phenotype of an organism
In monohybrid crosses, there tall (or) and	are general comb short () pea plants as ar	pinations of alleles. Let's use Mendel's n example:
Homozygous vs. Homozygous	Homozygous vs. Heterozy	ygous Heterozygous vs. Heterozygous
Genoytpes:	Genoytpes:	Genoytpes:
Phenotypes:	Phenotypes:	Phenotypes:
If a plant is short, we know the formation of the short is tall, it can be either Mendel devised a very clever.	hat it must be (()) or() of plants with
nhenot	vnes He bred (crossed) these	plants with a
plant. I	He called it a "	,

If the parent plant exhibiting the dominant trait was:

- homozygous for the dominant allele (eg. TT), then the phenotypes of the offspring would be
- heterozygous for the dominant allele (eg. Tt), then the phenotypes of the offspring would be and
- eg. Pea plants can have either purple or white flowers. Purple is dominant. The genotype of a purple-flowered plant could be PP or Pp. How could you determine the genotype of a purple-flowered plant?

Genoytpes: _____ Phenotypes: _____

Examples:

Questions:

- 1. Does pedigree A show the inheritance of a dominant or recessive allele? ______. How do you know?
- 2. Does pedigree B show the inheritance of a dominant or recessive allele? ______. How do you know?
- 3. Label the genotypes of as many individuals in the pedigrees as possible. Use 'A/a' for the alleles in the first pedigree and 'B/b' for the alleles in the second pedigree.

Monohybrid Cross Variations: Incomplete Dominance and Co-Dominance

So far, we have discussed single gene traits which show ______. If the dominant allele is present, it completely ______ the presence of a recessive allele

ex.

But there are several variations:

1) Incomplete Dominance

The dominant gene does	completely mask the pre	sence of the recessive allele. A
	_ individual shows a	of the traits part way
between the dominant and	recessive alleles. (For example,	a red flower & white flower may
produce a pink flower)		

Both alleles are	,	so we can't	t say that o	ne is completely dominant
over the other and use	a normal upper-case	and lower-o	case letter.	Instead we use a capital letter
for the	allele (ex) and th	e same cap	bital letter plus a "prime"
symbol (') for the	al	llele (ex)	

Ex. When a homozygous red flowered snapdragon plant is crossed with a homozygous white flowered snapdragon, predict the genotypes and phenotypes of the F_1 and F_2 generation. (a heterozygous plant will have pink flowers)

2) <u>Co-dominance</u>

There are two ______ alleles and both are expressed. A heterozygous individual clearly shows ______ traits at the same time. (For example, a red flower & white flower may produce a red/white striped flower)

Since both alleles are equally dominant, each trait gets a _____ capital letter.

Ex. A homozygous red tulip is crossed with a homozygous white tulip. Predict the genotypes and phenotypes of the F_1 and F_2 generations. The red and white alleles are co-dominant.

Blood Types: Multiple Alleles and Co-Dominance

So far, we have seen genes with	h alleles. The	ese allele	es can	be:		dominant or
recessive (Bb),	(B	W), or _			de	ominant (B B').
However, some genes can have		_ (than two)	alleles. For	example, there
are main phenotypes (t	ypes) of blood:	,	,	, and _	Bloo	od type is
determined by the	or		_ of ce	ertain		
(proteins) on the surface of the			(). There are	
alleles that determine blood typ	e. These alleles a	re:				
• a	allele called	which	n code	s for immu	noglobulin _	on the
surface of the RBC						
• a	allele called	which	n code	s for immu	noglobulin _	on the
surface of the RBC						

• a ______ allele called _____ which codes for _____ immunoglobulins on the surface of the RBC

There are _____ possible alleles for the blood type (immunoglobulin) gene, but you still only get _____, one from each _____. The possible phenotypes and genotypes are:

BLOOD TYPE	Immunoglobulins (Proteins) on the RBCs	Will make Antibodies to:	What type(s) of blood can they give and get?
Blood Type A (Phenotype A) Genotype(s):			Can give to: Can get from:
Blood Type B (Phenotype B) Genotype(s):			Can give to: Can get from:
Blood Type AB (Phenotype AB) Genotype(s):			Can give to: Can get from:
Blood Type O (Phenotype O) Genotype(s):			Can give to: Can get from:

People with A type blood (R	BCs with) can be g	iven blood from
another person with type	blood (either	or) because	their body will
not recognize any	between	n the	blood	and their
blood. They can a	lso receive type	_ blood () because	blood has
immunoglobulins for the boo	dy to recognize as		().
However, if a person with A system will recognize that the will make	type blood is given ty ie immunoglob to the im	rpe or ulin is " munoglobulins.	blood, the po ". Their Antibodies work	erson's immune immune system by
to protein	ns from	,	,	or
	. The antibodies make	e these foreign n	naterials	together
(). This makes it eas	ier for the		
() to recognize t	he foreign material an	d	it.	
So, if a person with type	blood is given typ and cause the	e blood, t	he antibodies stic	k to the er. If the person
has been given a fairly large (clumped together) type, and the p	amount of blood, ther _ red blood cells that to person will	e are so many _ hey will	the pers	son's
 Similarly, people with type type immunoglobulie they can be given type can give (blood have immu lin is (either) their blood to people	noglobulin , so they make or) with or	_ on their e or type O (i ⁰ i ⁰ , h blood	as no or)
 A person with type ty there are foreign they can be given (receiv they can only give () 	pe blood has immunoglobulins, so re)) their blood t	and they of blood to other people v	_ immunoglobulin form any with type	s on their
 A person with type blo all immunoglobulins with they can be given (receive can give (od () has h be re) type blood be) their blood to	immunogl _, so they form cause it has	obulins on their F antibodies to both immunoglob	RBCs a and ulins
The Rh Factor Another aspect of blood type	e is the	or	of the	
If you have the Rh factor () on your	, yo	ou are	. Most
people () have the RI	n factor. If you	have the l	Rh factor (protein)) on your RBCs.
voli are	Only of per	onle do not have	the Rh factor Sc	a nerson's
hland t	Only of por	d and	their state	
	pe menudes men bloo	u and		is, cg

Examples of a genetics problem involving multiple alleles:

1. A woman who is homozygous for blood type B marries a man that is heterozygous for blood type A. State the possible genotypes and phenotypes of their offspring.

2. A man with blood type O marries a woman with blood type AB. State the possible genotypes and pheontypes of their children.

3. A woman whose blood type is B (heterozygous) gives birth to a child whose blood type is O. The woman claims that there are two possible fathers: one with blood type AB and the other with blood type A (heterozygous). Showing all work, determine which man <u>cannot</u> be the father.

Monohybrid Crosses: Sex-Linked Traits

• these genes can be or

a)	Dominant X-linked genes affect male and females have an chromoson	s and females ne		, be	cause b	oth males
•	of a	gene is	enough to	cause the t	trait or c	lisorder
•	one of the very few conditions that are is	caused by				inheritance
•	Rett syndrome causes	and		disa	bility ir	1
	Male fetuses with this gene are				5	
b)	Recessive X-linked genes affect	muc	ch more of	ften than		
•	females have chromosome	es, so they get	: a ''	>>	copy of	the genes
	on the X chromosome. A female will o	nly develop a	recessive	X-linked tra	ait if she	e has
	of the recessive	e gene, one fro	m			and this is
	very	0				
•	a girl who is heterozygous for the reces	ssive allele				~ -
	have the disorder, but she will be a					OT
•	males are much	to exhibit				1 2
	X-linked disorders because they have				4	
	chromosome. If their X chromosome c	arries the			2	3 4
	gene for a genetic disorder they do not	t have a		<u> </u>	1	- L
	second X chromosome to provide a "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			C	OTE
	copy so they	the disorder	1	2	3	4 5
•	evamples of V-linked recessive genes i	include		1	\sim	
•	Duchenne's	literade		1 S	ΥT	니 🗖
	red groop	,		—		2 3
	, red-green,			Ó	Π	Ó
	and male-pattern			1	2	ă

- eg. Hemophilia is an X-linked recessive trait. A female carrier marries a normal male.
 - a) If the couple has a son, what are the chances that he will have hemophilia?
 - b) What are the chances that their children will be carriers of the hemophilia gene?

Review of Meiosis as an Introduction to Dihybrid Crosses

During metaphase I of meiosis, homologous pairs of duplicated chromosomes (line up along the equator with the ______ and _____ chromosomes _____ on either side of the equator. This is called ______ (Random) _____. For example, if we consider a diploid cell with two chromosomes in metaphase I, the tetrads could be arranged _____ ways (for simplicity, we will ignore the results of): OR Then during metaphase II and anaphase II, the _____ are separated to form four haploid ______. Each gamete gets ______ for each trait in combinations: The probability (chance) of each combination of alleles is equal: a chance of each. The discovery that offspring get ______ for each trait from each parent was made

by ______ during his ______ ror each that from each parent was indee by ______ during his ______ cross experiments with garden peas. He called the division of maternal and paternal ______ (alleles) into separate gametes the "Principle of _____".

Then Mendel asked another question: was there a relationship between the inheritance of certain
_____? Did tall plants always have purple flowers and yellow seeds (all ______ traits)? Did short plants always have white flowers and green seeds (all ______ traits)?
Did the ______ or _____ traits tend to be inherited together?

To answer this question, Mendel did a second set of experiments called '______ in which he studied ______ at the same time. Mendel bred plants that were '______ ' (purebred or ______) for two traits. eg. tall plants (TT) which always had purple flowers (PP), so the plant was ______

short plants (tt) which always had white flowers (pp), so the plant was

He ______pollinated the purebred plants to produce the _____ generation. All of the plants were ______ with ______ flowers. Then Mendel allowed the F₁ plants to ______- pollinate to produce the ______ generation. He observed the ratio:

- _____ tall plants with purple flowers
- _____ tall plants with white flowers
- _____ short plants with purple flowers
- _____ short plant with white flowers

Mendel repeated the dihybrid cross experiments with other combinations of traits and always got the ______ in the F₂ generation: ______

From his dihybrid experiments, Mendel discovered the Principle of ______

		Very simply, it state	s that different		are inherited	
		of one another. We	now know that	t this is becaus	e of	
	and		_ of maternal an	nd paternal chr	omosomes during	g
		_ and the independent	() assortment o	of chromosomes i	n
		_ in meiosis. The inhe	ritance of one _		(one)
does	influenc	e the inheritance of oth	ier	().	

Х

 F_1 :

TT PP

tt pp

Solving Dihybrid Crosses: Two Traits at the Same Time

eg. A homozygous dominant pea plant with tall stem and yellow seeds is crossed with a homozygous recessive pea plant with a dwarf stem and green seeds. Predict the possible genotypes and phenotypes of the F_1 and F_2 generation plants.

<u>Step 1</u>: Define the alleles.

<u>Step 2</u>: Determine the genotypes of the parents from the information you are given. Write the male's genotype above the Punnett Square and the female's genotype along the side.

<u>Step 3</u>: Set up a Punnett square. Use "FOIL" rule to get all the possible combinations of gametes. This is the F_1 cross.

<u>Step 4</u>: Determine the genotype(s) of the F_1 individuals and write them across the top and down the side a second Punnett Square.

<u>Step 5</u>: Set up a Punnett square. Use "FOIL" rule to get all the possible combinations of gametes. This is the F_2 cross.

-			

<u>Step 6</u>:

List the ratios of the phenotypes of the F_2 generation. Make a

concluding statement to answer the original question.

eg. In mice, long whiskers are dominant over short whiskers, and brown fur is dominant over white fur. A male mouse that is heterozygous for both traits is crossed with a female mouse that is homozygous recessive for whisker length and heterozygous for fur colour. Predict the possible phenotypes of their offspring.

<u>Step 1</u>: Define the alleles.

<u>Step 2</u>: Determine the genotypes of the parents from the information you are given. Write the male's genotype above the Punnett Square and the female's genotype along the side.

<u>Step 3</u>: Set up a Punnett square. Use "FOIL" rule to get all the possible combinations of gametes.

<u>Step 4:</u>	Summarize the phenotypes
of the of	fspring and answer the
question	(if necessary).

eg. In a certain type of plant, smooth leaves are dominant over hairy leaves and red leaves are dominant over green leaves. If a plant that is homozygous for smooth leaves and heterozygous for leaf colour is crossed with a hairy plant with green leaves, predict the possible appearance of the offspring.

Using Genetics: Treating Genetic Disorders

Gene Therapy:

All traits (including " A protein(s) fo		") are expressed through the production of means that the person is unable to produce the r that trait (either no protein is made, or the protein that is made i	is
In a pr (reces	ocedure known as sive allele) is	, basically, the defective gene with a "non-defective" gene (dominant allele)	
Steps 1)	involved: The	cells are removed from the body and grown in a	
2)	Meanwhile, the " created	" gene is isolated from normal donor cells (or)	
3)	The normal gene is the	(inserted) into the DNA of a harmless or virus. DNA that has been created from two or more sources is	
4)	The genetically engine petri dish by" ge	ed viruses (GEV's) then "" the affected cells in the The cells now have a ne (dominant allele) for the trait and begin to produce the 	е
5)	These " person's body. Any the ability to produce the "normal" gene as part of	" cells (repaired cells) are re-introduced into the cells produced by mitosis from these repaired cells will hav (since they now have the their DNA) Cells harvested from patient Cells harvested from patient from patient	'e

Final Thoughts: Gene Frequency, Dominance and Penetrance

The frequency of ce	rtain genes in a population is	very	over gene	rations.
Genes have higher _	(are more) in certain	n populations
if they give the indiv	vidual some kind of			·
eg. populations who	o live close to the in their skin because this pr	have a h otects them from	igher frequenc	y of genes for and
eg. populations who	b live in areas where there is _	D 1 1	_have a higher	frequency of
genes for sickle hemoglob	oin are more resistant to	People with	recessi	ve allele for
Dominant genes are population. Domina	not necessarily more	or ". For	example:	in a
 the gene for 	(extra fine	pers & toes) is d	lominant. but o	uite
• the blood type	is the most	, but a	also the most _	
The	of an individual (its between its in which it lives (().) is the) a	result of the nd the
While many individ necessarily how genes are	uals have the in the ("epi" means " (turned	for certain A " or " or)	traits, the gen new field calle ") is th by different fa	es are not ed e study of actors in the
In genetics, certain number of individua	is defined as the for a in their in the curve show (the proportion o	f individuals w compare	who have a ed to the for that
In medicine, some g with the allele devel	enetic disorders are highly op the disease. Alleles for oth	er genetic disor	and in ders are	ndividuals penetrant.
For example, the BR	RCA1 and BRCA2 alleles for	(cancer are abou	ıt
breast cancer in thei	r lifetime. However.	curry these unit	and this is ir	fluenced by
environmental facto	rs such as	(and
le	vels),	history (ho	ormone levels)	-
,	consumpti	on and other fac	tors.	