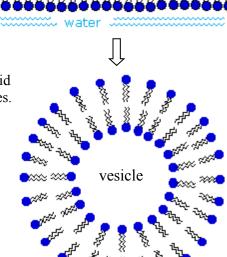

The Earth was formed about 4.54 billion years ago and the earliest life on Earth arose at least 3.5 to 3.8 billion years ago. Conditions on Earth at that time were very different than they are today. The atmosphere was probably a mixture of gases including: H₂O, CO₂, H₂, N₂, CH₄, NH₃, H₂S and HCN. There was a great deal of energy available from volcanic activity, ultraviolet light and lightning. The oceans were very warm, about 95°C.


Recall from the note on macromolecules that phospholipids have a hydrophilic (water-loving) phosphate "head"

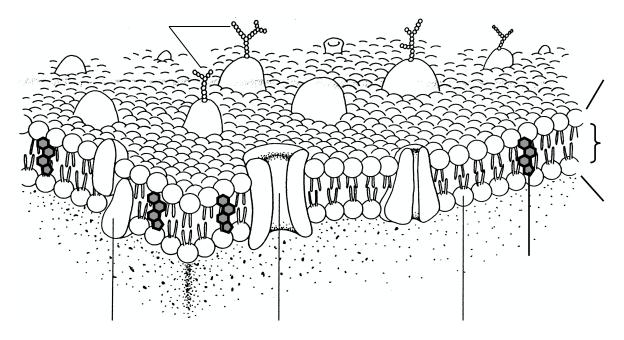
and two hydrophobic (water-fearing) fatty acid "tails". The phosphate head is attracted to water, while water repels the fatty acids. This automatically orients the phospholipid into a "bilayer".

The bilayer formed naturally into spherical vesicles, creating a membrane which separated the fluid on the inside of the vesicle from the fluid on the outside. The membrane restricted the movement of substances into and out of the vesicle and the composition of the internal fluid gradually became very different from the fluid outside. Chemical reactions inside the vesicle formed more complex molecules.

The development of this membrane was critical for life. Over time, substances such as protein, cholesterol and sugars were attached to, or imbedded in, the membrane. These substances can move laterally (from side to side) through the phospholipids, so the membrane is described as a "fluid mosaic".

The fluidity of the membrane made it possible for large vesicles to pinch apart into smaller vesicles. Eventually vesicles actually controlled their reproduction and passed on the instructions they needed for their chemical reactions using single stranded RNA as their genetic material. At this point, the vesicles are called cells, which means "little rooms" (like a prison cell) and life has begun.

NOTE: while scientists have been able to create macromolecules and vesicles in the lab, they have never been able to create "life". No one knows exactly what it is that makes molecules "come alive".

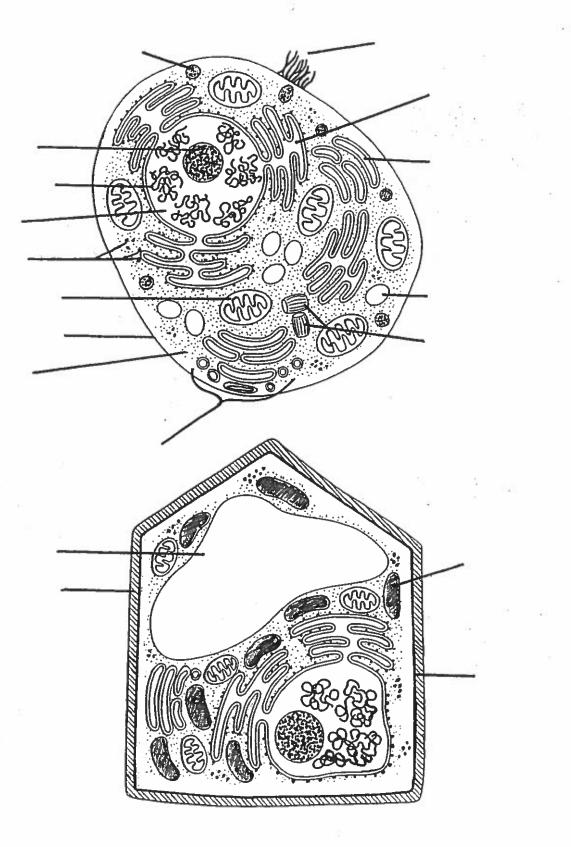

The first cells were very simple. They did not have any membrane-bound organelles such as a nucleus or mitochondria. These cells did have ribosomes made of RNA combined with proteins. Later cells developed DNA to store their genetic information. Because DNA is double stranded, it is more stable than RNA. Cells without DNA became extinct. Scientists suggest that one form of the DNA-based cell was so successful that it became the ancestor of all subsequent cells. This cell is called the Last Universal Common Ancestor (LUCA). Many chemicals and reactions are the same in all cells, which suggests that there was a single common ancestor for all living things.

The DNA in the earliest cells was a single DNA loop floating loosely in the cell's fluid. Other early cells 'clumped' their DNA in a "nucleoid" region. Neither the DNA loop nor nucleoid is surrounded by a nuclear membrane so these simple cells are called "prokaryotes" which literally means "before kernel" ('kernel' refers to the nucleus which looked like a small nut or popcorn kernel under early microscopes).

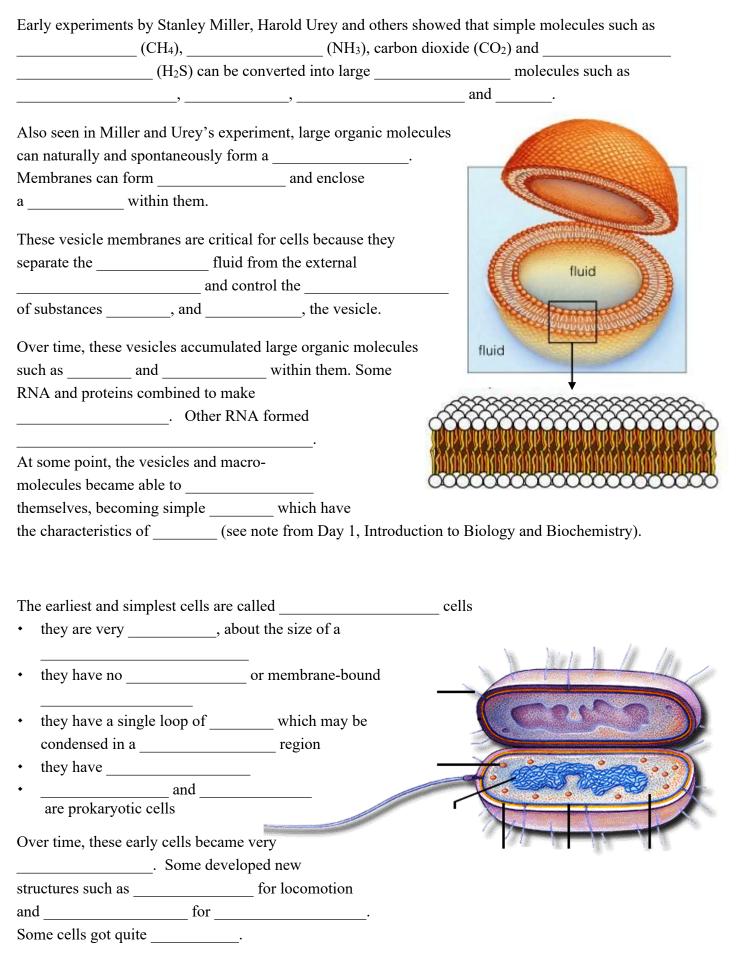
Over time, some cells became more complex and developed a membrane-bound nucleus. Cells which have a membrane-bound nucleus are called eukaryotes. "Eu" means "good or true", so these cells have a "good kernel" or "true nucleus". (FYI: Other words also use the prefix "eu": the Nazis practiced "*eu*genics" to select for "good genes" to make a master race, *eu*thanasia means "good death".)

Modern cells have a phospholipid bilayer membrane which separates the intracellular fluid (ICF, inside the cell) from the extracellular fluid (ECF, outside the cell). The cell membrane is selectively permeable, which means that it allows only some substances to move through it freely (for example, very small molecules such as H_2O , CO_2 or O_2) while it blocks the movement of other substances (larger polar molecules or ions which can not pass through the non-polar fatty acid tails). In the next lesson, we will learn how substances are moved, or transported, from one side of the membrane to the other.

A eukaryotic cell membrane (the fluid mosaic model):

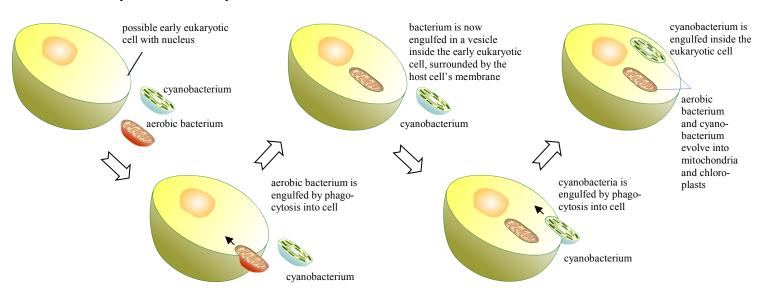


Questions: (Textbook reference pages 417 - 418)


- 1. Describe the composition of the atmosphere when the first cells developed. What is the most significant difference between the very early atmosphere and the atmosphere today?
- 2. What molecules were produced in the Miller-Urey experiment?
- 3. Explain how the properties of phospholipids enable them to arrange themselves into a bilayer and create vesicles.
- 4. Why is the development of vesicles critical to the development of life?
- 5. Why is the development of RNA critical to the development of life?
- 6. How did the development of DNA affect the development of cells?
- 7. Why are 'modern' cell membranes described as a "fluid mosaic"? Explain the significance of both words.
- 8. Humans share 50% of their genetic material with bananas!! How does this fact relate to the idea of a LUCA?
- 9. Explain the fundamental difference between a prokaryotic and a eukaryotic cell.

Animal and Plant Cells

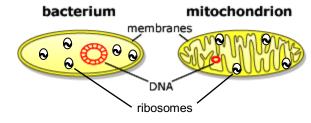
(

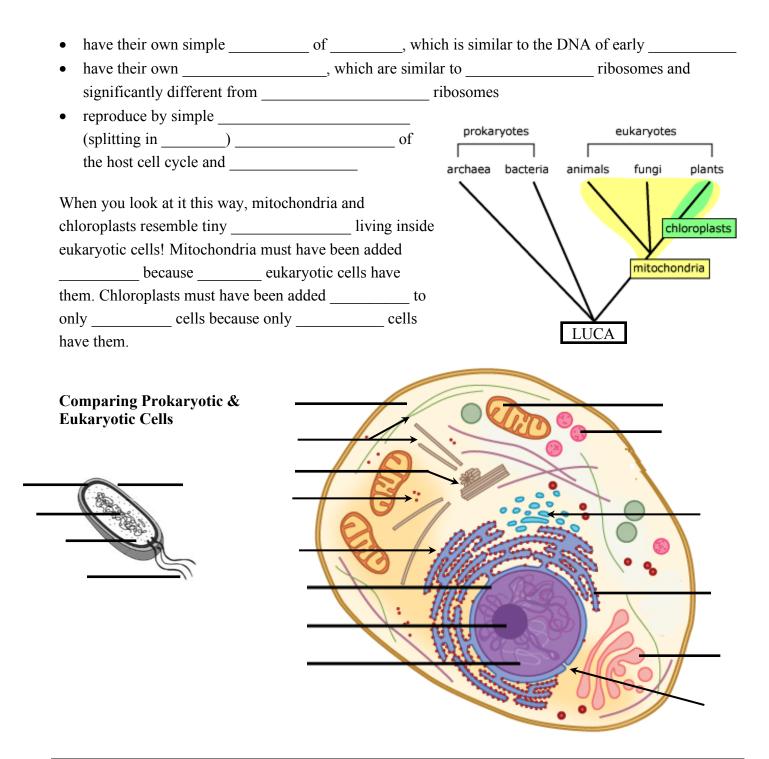


Introduction to Cells

In some of the larger cells, the cell membrane ______ in and eventually ______ the ______ inside a _______ creating the ______ and giving rise to the earliest ______ cell. ______ relationship.) In some of the larger cells, the cell membrane _______ in and giving rise to the earliest _______ cell. ______ as imple, aerobic _______ cell such as a _______ by _______ a simple, aerobic _______ cell such as a _______ by _______, possibly as a meal. However, instead of dying, the prokaryotic cell continued to _______, possibly as a meal. However, instead of dying, the prokaryotic cell continued to _______, protected environment for the prokaryotic cell. The eukaryotic cell. The prokaryotic cell used the food and provided _______ for the eukaryotic host cell. Because _______ cells ______ by living together with the other, it is called a "_______ relationship". (In contrast, if one living thing benefits at the _______ of another, it is called a _______ relationship.) Over time, both cells became _______ on each other and could not live _______. At this point, the prokaryotic cell has become a ________ of the host cell. It has become an _________ it he ________.

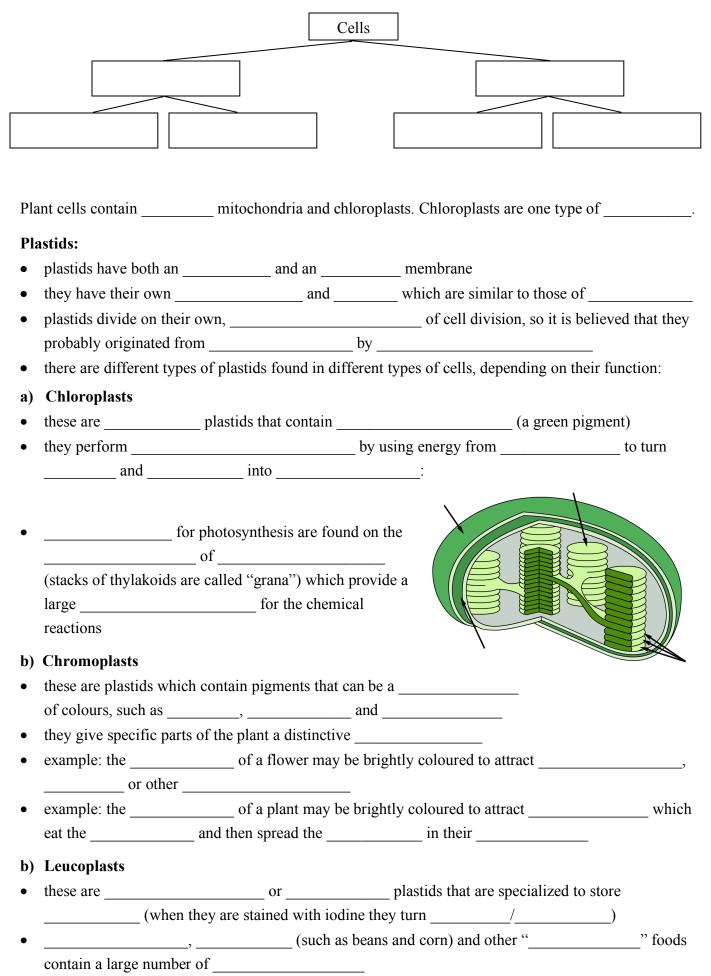
Similarly, at a later time, a eukaryotic cell that has mitochondria engulfed another simple cell, perhaps a _______ that is capable of _______. This cyanobacteria becomes a permanent resident inside the eukaryotic cell, producing _______ for the host cell by ______. It becomes an ______: the _____.

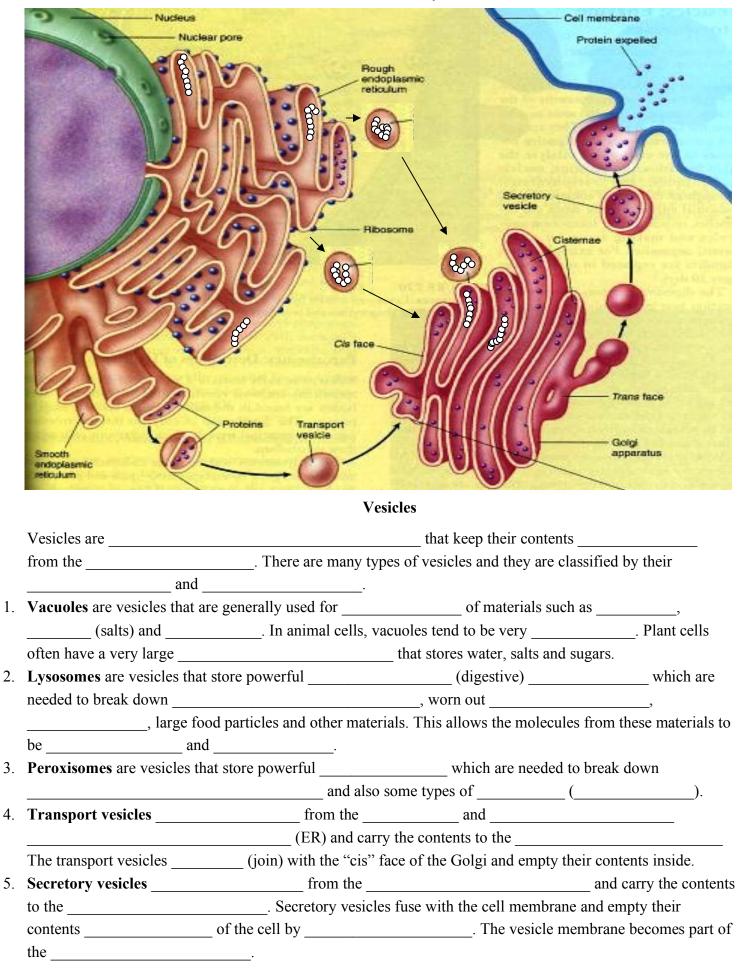



Endosymbiosis Theory: (http://bugs.bio.usyd.edu.au/learning/resources/CAL/Microconcepts/moviePages/incorporation.html)

Endosymbiosis Theory is supported by the many similarities between bacteria, mitochondria and

chloroplasts. Both mitochondria and chloroplasts:


- are about the same _____ as a simple bacteria
- are surrounded by ______ which suggests that they were engulfed by

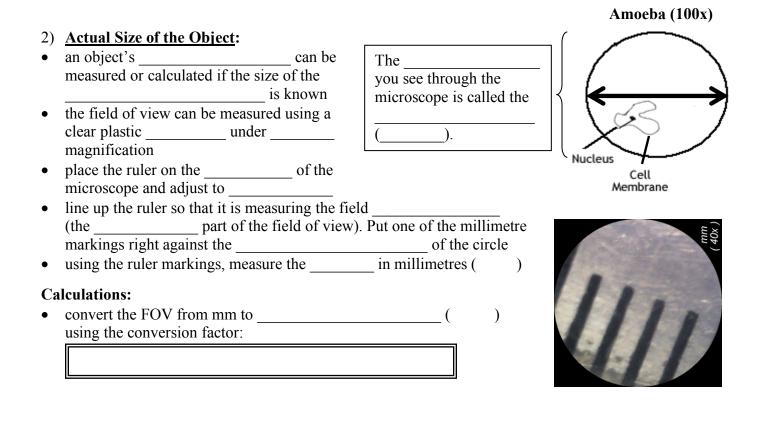


	Prokaryotic Cells	Eukaryotic Cells
Relative Size		
Presence of a membrane- bound nucleus?		
Describe the genetic material		
Presence of membrane- bound organelles?		
Presence of ribosomes?		
Examples		

Notes about Some of the Cell Parts

Endomembrane System

Microscope Calculations


It can be difficult to know the sizes of objects seen under a microscope. How big is a human cell compared to a bacterial cell? Compared to a virus?

There are two calculations we can do:

- 1) **Total Magnification of the Object:**
- How many times larger does the object appear than the original specimen?

Total magnification =

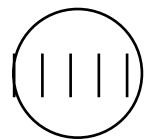
eg. If a specimen is viewed using a 10x ocular lens and the 40x high power lens, what is the total magnification?

As the magnification ______, the amount of the object that you see ______ in exact proportion. Mathematically, this can be written:

 $FOV_{low} X$ magnification $_{low} = FOV_{medium} X$ magnification $_{medium} = FOV_{high} X$ magnification $_{high}$

Once you have measured the FOV under low power, you can use the magnification of the lenses to calculate the FOV for either ______ or _____ power. For the above microscope under medium power (100x):

Now that you know the size of the field of view under medium or high power, you can the size of the object you are viewing.


eg. estimate the length and width of the mite in the microscope image to the right. It is viewed under medium power using the microscope from the calculations on the front of the page.

The width of the mite is about _____ of the FOV under medium power:

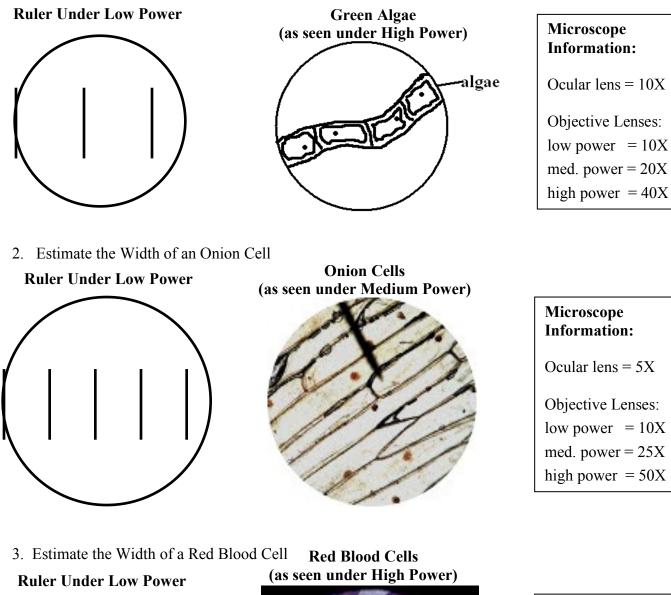
The length of the mite is about _____ of the FOV under medium power:

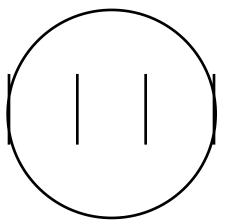
eg. A student measured the field of view under low power and then studied onion cells under low, medium and high magnification. He took pictures of the field of view under each power. Using the microscope information, estimate the actual width and length of one onion cell using the image under high power:

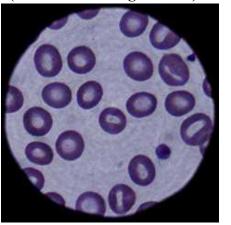
Ruler Under Low Power

Medium Power

High Power


Microscope Information:


Ocular lens = 10X Objective Lenses: low power = 10X med. power = 30X high power = 60X


Microscope Calculations Homework

Use the diagrams and microscope information to estimate the approximate sizes of the objects in micrometers (µm) seen under the magnifications given. Show all calculations and include all units.

1. Estimate the Width of the Algae

Microscope **Information:** Ocular lens = 10XObjective Lenses: low power = 10Xmed. power = 30Xhigh power = 60X

Answers:

- FOV low = 2500 μ m, FOV high = 625 μ m, algae about 1/5 1/6 FOV, width = 100 140 μ m
- 1. FOV low = 4500 μ m, FOV med = 1800 μ m, cell about 1/8 – 1/9 FOV, width = 180 – 200 μ m 2.
- FOV low = 3000 μ m, FOV high = 500 μ m, red blood cell about 1/7 1/8 FOV, width = 55 72 μ m 3.

The Nucleic Acids: DNA and RNA

DNA and RNA are	known as	because
they are found primarily in the		
attached together	in	RNA
a long chain.	5' - end H Uracil	
	O HANO	
Each nucleotide is made of a		
a and a		
. The sugar and phosphate grou	3°	Adenine
are bonded to for	C1	
a strong The nitrogen base is		н
bonded to the These chemi	Cal bonds OH H	N Cytosine
are!	N N	0
RNA stands for		
It is the and	nucleic acid.	NLH
• RNA is a		H-(N-Lu-H
• its sugar is (Ť	, I H
RNA has four nitrogen bases:		Guanine
C	1	
RNA is primarily involved in making DNA stands for It is	Adenine	e DNA
which makes it much moret Because of its stability, DNA is ideally suite		2
-	\	
 e its sugar is (
 DNA has four nitrogen bases: 		
• DIVA has four introgen bases.	δ.H ₂ Ń	2 9-
	0_H2N	N. 7-0
	- ° °	
Each nitrogen base is attracted to its comple	ementary base on the 🛛 🌱 🏹 💙	~ ~
opposite strand of DNA by	; \	H2N 0-
adenine is attracted to		
guanine is attracted to		
The hydrogen bonding holds the two strands	s of DNA together, 🔰 🎽 🎽	NH 2 A
forming the of the	The DNA of T	Cytosine
molecule to form a "	". Guan	ine

It is the of the		(A, T, C and G) in D	NA that stores the
genetic information. A "	" is a section of DNA	which has the information	tion to make one
Humans have		protein-coding ge	nes but this makes up
only of the total DNA. Th	e rest of the DNA used	to be called "	" but now
we suspect that it is important in mal	king and	0	cell activities.
If you take all of the	Nuclea	r	
from a	1 Augustin		
single human cell and lay it out,			
end to end, it measures about			romatin – 🥰
But the average	NER DES	DN 🔊 👌 DN	IA 🧖
human cell is only	ALL STAR	-He	lix 💦 📿
() in diameter	Schromatin		
and the is even	DESTRICT		
smaller. How does all of the DNA	States and		Histones
into the nucleus?		4	
When a cell is not dividing, the		•	9
DNA is found in the nucleus as	Chr	omatin is made of DNA	A wrapped around
called			
DNA is 2 meters, the length of the _			
When the DNA needs to be copied for or, it is, it is, it is, wrapped back up again. This preserve protects the valuable DNA.	and then	the	e complementary e unzipping a zipper).
The steps of DNA replication are sho in the diagram to the right:	own		
The exposed		C-G	An enzyme called
attract their complementary	G-C	G G-C	
(,		т А-Т	chemically bonds the
(and		C A-T	and
) that are	2. F		on
free in the		otides	adjacent
	· / 🗡	X	
The two new strands of DNA are	1/ 🖉		together to form the
into	/ 🤝		
by another enzyme.	Ò	A state	backbone.

Mutations

Sometimes there is a	when the DNA molecule is being	and this	
changes the of the	of the (A,T,C or G). A change in the order of the		
nucleotides is called a	Mutations may change the order of the		
in the	chain and this changes the shape of	of the	
Two common types of mutations can	used by DNA replication (copying) errors are:		
1. A	(also called a)	
	with another nucleot		
eg. The sequence is AATCGCTTA	GAG could become:		
2. A	_ mutation which (adds in) of	or	
(leaves out) one or more nucleot	ides.		
eg. The sequence AATCGCTTAGA	AG could become:		
The DNA sequence is read in groups	s of nucleotides. Each set of three	e nucleotides is	
called a and it is the	e code for a single	·	
As an analogy, the DNA sequence (a	a) is like a	written with only	
). A mutation is similar to changing one		
	of the letters, and this changes the		
sentence.			
eg. Read this sentence: Thedaywas	hotbuttheoldmandidnotgethishat.		
If we group the letters into three letter	er words we get:		
If we replace the "d" in day with an	"e" (a base-pair substitution), we get:		
If we change the "d" in day with an	"r" (a base-pair substitution), we get:		
If we insert an "r" after the d in "day	" (a frameshift mutation), we have:		
A mutation may be a:			
•	atation that makes a protein or cell function		
	tation that makes a protein or cell function		
cell may even			
3 mutation that of	loes not or	_ the cell	

Summary:

The structure of the DNA molecule has three properties which are critical to how it functions:

- 1. Because A always pairs with T and C always pairs with G, DNA can make copies of itself. If you pull the two strands apart, each can be used as a pattern to make the matching (complementary) strand (and a new DNA molecule).
- 2. **DNA can carry information**. The order of the bases along a strand is a code a code for making proteins and these control all cell functions.
- 3. DNA can be greatly condensed:
 - the total length of the completely uncoiled DNA in a single cell is about 6 meters
 - the total length of the chromatin (partially coiled DNA) is 28 cm
 - the total length of the chromosomes (completely coiled DNA during mitosis) is approximately 0.060 cm or just 0.6 millimeters

Homework:

- 1. Re-read the above note very carefully.
- a) What molecules make up a nucleotide?
- b) What are three significant differences between DNA and RNA?
- c) What is a gene?
- d) What are the TWO components (parts) of chromatin?
- e) What is a codon?
- f) What three properties make DNA an excellent molecule to carry the genetic code?
- 2. For the genetic code (gene): TATAGCGTGAAATTCACGG
 - a) write it in codons:
 - a) write one possible point mutation:
 - b) write one possible frameshift mutation:
- 3. Read pages 199 203. (up to but not including Cloning)
- 4. Write a brief outline of the steps of DNA replication. Include the information from our class note and the diagram on the top of pages 200 201.
- 5. What is one way that cells protect themselves against copying errors during replication?
- 6. Give an example of a "condition" caused by a genetic mutation.
- 7. What is a mutagen? Give examples of two different types of mutagens.
- 8. Explain how some mutations may cause cancer.
- 9. A common form of cystic fibrosis is caused by a single point mutation. Read the BioFact on page 30 about cystic fibrosis (you read this earlier when we were discussing cell transport). How does the point mutation (a genetic disorder) cause cystic fibrosis? How does cystic fibrosis affect cells and then people?